Couvre les bases de la régression linéaire et la façon de résoudre les problèmes d'estimation en utilisant les moindres carrés et la notation matricielle.
Explore l'estimation ponctuelle dans les statistiques, en discutant du biais, de la variance, de l'erreur quadratique moyenne et de la cohérence des estimateurs.
Explore l'optimalité dans la théorie de la décision et l'estimation impartiale, en mettant l'accent sur la suffisance, l'exhaustivité et les limites inférieures du risque.
Explore l'estimation statistique, comparant les estimateurs basés sur la moyenne et la variance, et plongeant dans l'erreur carrée moyenne et Cramér-Rao lié.
Discute de la distribution de Dirichlet, de l'inférence bayésienne, de la moyenne postérieure et de la variance, des antécédents conjugués et de la distribution prédictive dans le modèle de Dirichlet-Multinôme.