Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre l'estimation paramétrique, la modélisation saisonnière, les méthodes Box-Jenkins, les calculs de variance et les mesures de dépendance dans l'analyse des séries chronologiques.
Couvre Vector Autoregression (VAR) dans l'analyse des séries chronologiques, y compris les propriétés d'échantillonnage et des exemples de processus VAR.
Explore la mémoire longue dans les séries temporelles et les processus d'hétéroskédasticité conditionnelle autorégressive dans les données financières.
Explore les modèles de choix binaires comme probit et logit, ainsi que l'analyse de séries temporelles univariées avec les modèles ARIMA pour la prévision des variables économiques.
Explore l'estimation paramétrique, les processus intégrés, la modélisation saisonnière et la construction de modèles ARIMA dans l'analyse des séries chronologiques.
Explore les modèles de séries chronologiques, en mettant l'accent sur les processus autorégressifs, y compris le bruit blanc, AR(1) et MA(1), entre autres.
Couvre la méthodologie Box-Jenkins pour construire des modèles de séries chronologiques, y compris l'identification des modèles, les calculs de variance et le diagnostic des modèles.