Anneau adéliqueEn mathématiques et dans la théorie des nombres, l'anneau adélique, ou anneau des adèles, est un anneau topologique contenant le corps des nombres rationnels (ou, plus généralement, un corps de nombres algébriques), construit à l'aide de toutes les complétions du corps. Le mot « adèle » est une abréviation pour « additive idele » (« idèle additive »). . Les adèles étaient appelées vecteurs de valuation ou répartitions avant 1950.
Andrew Wilesvignette|Andrew Wiles devant la statue de Pierre de Fermat à Beaumont-de-Lomagne (1995). Andrew John Wiles (né le à Cambridge, Angleterre) est un mathématicien britannique, professeur à l'université d'Oxford, en Angleterre. Il est célèbre pour avoir démontré le grand théorème de Fermat (1994). Il est lauréat du prix Abel 2016. Après avoir obtenu son diplôme de bachelor au Merton College de l'université d'Oxford, il entre au Clare College en 1974 pour y préparer un Ph.D.
Géométrie arithmétiquevignette|Exemples de figures géométriques: un cône et un cylindre. La géométrie arithmétique est une branche de la théorie des nombres, qui utilise des outils de géométrie algébrique pour s'attaquer à des problèmes arithmétiques. Quelques exemples de questions qui peuvent se poser : Si on sait trouver des racines d'une équation polynomiale dans toutes les complétions d'un corps de nombres, peut-on en déduire que cette équation a des racines sur ce corps ? On sait répondre à la question dans certains cas, on sait que la réponse est non dans d'autres cas, mais on pense (c'est une conjecture) connaître l'obstruction et donc savoir reconnaître quand cela fonctionne.
Cohomologie galoisienneEn mathématiques, la cohomologie galoisienne est l'étude de l'action d'un groupe de Galois sur certains groupes, par des méthodes cohomologiques. Elle permet d'obtenir des résultats à la fois sur le groupe de Galois agissant, et sur le groupe sur lequel il agit. En particulier, le groupe de Galois d'une extension de corps de nombres L/K agit naturellement par exemple sur le groupe multiplicatif L, mais aussi sur le groupe des unités de l'anneau des entiers du corps L, ou sur son groupe des classes.
Théorème de modularitéLe théorème de modularité (auparavant appelé conjecture de Taniyama-Weil ou conjecture de Shimura-Taniyama-Weil ou conjecture de Shimura-Taniyama) énonce que, pour toute courbe elliptique sur Q, il existe une forme modulaire de poids 2 pour un Γ(N), ayant même fonction L que la courbe elliptique. Une grande partie de ce résultat, suffisante pour en déduire le dernier théorème de Fermat, a été démontrée par Andrew Wiles. S'inspirant de ses techniques, Christophe Breuil, Brian Conrad, Fred Diamond et Richard Taylor ont traité les cas restants en 1999.
Linear algebraic groupIn mathematics, a linear algebraic group is a subgroup of the group of invertible matrices (under matrix multiplication) that is defined by polynomial equations. An example is the orthogonal group, defined by the relation where is the transpose of . Many Lie groups can be viewed as linear algebraic groups over the field of real or complex numbers. (For example, every compact Lie group can be regarded as a linear algebraic group over R (necessarily R-anisotropic and reductive), as can many noncompact groups such as the simple Lie group SL(n,R).
Multiplication complexeEn mathématiques, une courbe elliptique est à multiplication complexe si l'anneau de ses endomorphismes est plus grand que celui des entiers (il existe une théorie plus générale de la multiplication complexe pour les variétés abéliennes de dimension supérieure). Cette notion est liée au douzième problème de Hilbert. Un exemple de courbe elliptique avec multiplication complexe est C/Z[i]θ où Z[i] est l'anneau des entiers de Gauss, et θ est n'importe quel nombre complexe différent de zéro.
Loi de réciprocité quadratiqueEn mathématiques, en particulier en théorie des nombres, la loi de réciprocité quadratique, établit des liens entre les nombres premiers ; plus précisément, elle décrit la possibilité d'exprimer un nombre premier comme un carré modulo un autre nombre premier. Conjecturée par Euler et reformulée par Legendre, elle a été correctement démontrée pour la première fois par Gauss en 1801.
Levi decompositionIn Lie theory and representation theory, the Levi decomposition, conjectured by Wilhelm Killing and Élie Cartan and proved by , states that any finite-dimensional real{Change real Lie algebra to a Lie algebra over a field of characterisitic 0} Lie algebra g is the semidirect product of a solvable ideal and a semisimple subalgebra. One is its radical, a maximal solvable ideal, and the other is a semisimple subalgebra, called a Levi subalgebra.
Formule des traces de SelbergEn mathématiques, la formule des traces de Selberg est un résultat central en analyse harmonique non commutative. Elle fournit une expression pour la trace de certains opérateurs intégraux ou différentiels agissant sur des espaces de fonctions sur un espace homogène G/Γ, où G est un groupe de Lie et Γ un groupe discret, ou plus généralement sur un double quotient H\G/Γ. Un cas particulier important est celui où l'espace est une surface de Riemann compacte S.