Revêtement (mathématiques)En mathématiques, et plus particulièrement en topologie et en topologie algébrique, un revêtement d'un espace topologique B par un espace topologique E est une application continue et surjective p : E → B telle que tout point de B appartienne à un ouvert U tel que l' de U par p soit une union disjointe d'ouverts de E, chacun homéomorphe à U par p. Il s'agit donc d'un fibré à fibres discrètes. Les revêtements jouent un rôle pour calculer le groupe fondamental et les groupes d'homotopie d'un espace.
Reflection (mathematics)In mathematics, a reflection (also spelled reflexion) is a mapping from a Euclidean space to itself that is an isometry with a hyperplane as a set of fixed points; this set is called the axis (in dimension 2) or plane (in dimension 3) of reflection. The image of a figure by a reflection is its in the axis or plane of reflection. For example the mirror image of the small Latin letter p for a reflection with respect to a vertical axis (a vertical reflection) would look like q.
P-groupeEn mathématiques, et plus précisément en algèbre, un p-groupe, pour un nombre premier p donné, est un groupe (fini ou infini) dont tout élément a pour ordre une puissance de p. Les p-sous-groupes de Sylow d'un groupe fini sont un exemple important de p-groupes. Tout sous-groupe et tout quotient d'un p-groupe est un p-groupe. Réciproquement, si H est un p-sous-groupe normal d'un groupe G et si le quotient G/H est un p-groupe, alors G est un p-groupe. On peut tirer du point précédent qu'un produit semi-direct de deux p-groupes est un p-groupe.
FibréEn mathématiques, un espace fibré est, intuitivement, un espace topologique qui est localement le produit de deux espaces — appelés la base et la fibre — mais en général pas globalement. Par exemple, le ruban de Möbius est un fibré de base un cercle et de fibre un segment de droite : il ressemble localement au produit d'un cercle par un segment, mais pas globalement comme le cylindre Plus précisément, l'espace total du fibré est muni d'une projection continue sur la base, telle que la de chaque point soit homéomorphe à la fibre.
3-sphèrevignette|300 px|La 3-sphère en rotation, projetée dans R3. En mathématiques, et plus précisément en géométrie, une 3-sphère est l'analogue d'une sphère en dimension quatre. C'est l'ensemble des points équidistants d'un point central fixé dans un espace euclidien à 4 dimensions. Tout comme une sphère ordinaire (ou 2-sphère) est une surface bidimensionnelle formant la frontière d'une boule en trois dimensions, une 3-sphère est un objet à trois dimensions formant la frontière d'une boule à quatre dimensions.
IsométrieEn géométrie, une isométrie est une transformation, qui conserve les longueurs et les mesures d’angles, délimités par deux demi‐droites ou bien deux demi‐plans. Autrement dit, une isométrie est une similitude particulière, qui reproduit n’importe quelle figure à l’échelle 1. Ce rapport 1 de longueurs s’appelle le rapport de la similitude. Comme une similitude, une isométrie dite directe conserve l’orientation des figures, tandis qu’une isométrie indirecte inverse leur orientation.
Symétrie centralethumb|upright=0.7|Symétrie centrale plane dans une carte à jouer : sur la carte figure le roi de cœur et son symétrique par rapport au centre de cette dernière. En géométrie, une symétrie centrale est une transformation d'un espace affine. Elle se réalise à partir d'un point fixe noté Ω appelé centre de symétrie. Elle transforme tout point M en un point M' tel que le point Ω soit le milieu du segment [MM']. En termes de vecteurs, cela se traduit par : Comme toute symétrie, c'est une involution, c'est-à-dire qu'on retrouve le point ou la figure de départ si on l'applique deux fois.
Covering groupIn mathematics, a covering group of a topological group H is a covering space G of H such that G is a topological group and the covering map p : G → H is a continuous group homomorphism. The map p is called the covering homomorphism. A frequently occurring case is a double covering group, a topological double cover in which H has index 2 in G; examples include the spin groups, pin groups, and metaplectic groups.
Circle groupIn mathematics, the circle group, denoted by or , is the multiplicative group of all complex numbers with absolute value 1, that is, the unit circle in the complex plane or simply the unit complex numbers The circle group forms a subgroup of , the multiplicative group of all nonzero complex numbers. Since is abelian, it follows that is as well. A unit complex number in the circle group represents a rotation of the complex plane about the origin and can be parametrized by the angle measure : This is the exponential map for the circle group.
OctonionEn mathématiques, les octonions ou octaves sont une extension non associative des quaternions. Ils forment une algèbre à huit dimensions sur le corps R des nombres réels. L’algèbre des octonions est généralement notée O. En perdant l’importante propriété d’associativité, les octonions ont reçu moins d’attention que les quaternions. Malgré cela, ils gardent leur importance en algèbre et en géométrie, notamment parmi les groupes de Lie. Les octonions ont été découverts en 1843 par , un ami de William Hamilton, qui les appela octaves.