LogiqueLa logique — du grec , qui est un terme dérivé de signifiant à la fois « raison », « langage » et « raisonnement » — est, dans une première approche, l'étude de l'inférence, c'est-à-dire des règles formelles que doit respecter toute argumentation correcte. Le terme aurait été utilisé pour la première fois par Xénocrate. La logique antique se décompose d'abord en dialectique et rhétorique. Elle est depuis l'Antiquité l'une des grandes disciplines de la philosophie, avec l'éthique (philosophie morale) et la physique (science de la nature).
Modus tollensEn logique propositionnelle, le modus tollens (aussi nommé modus tollendo tollens, du Latin : « mode qui, en niant, nie ») est une forme d'argument valide et une règle d'inférence. Celui-ci est une application de la vérité générale selon laquelle, si une proposition est vraie, alors il en est de même pour sa proposition contraposée. Les premiers à décrire explicitement le modus tollens étaient les stoïciens. La règle d'inférence modus tollens est l'inférence selon laquelle « P implique Q » et la négation du conséquent Q entraînent la négation de l'antécédent P.
Logical formIn logic, logical form of a statement is a precisely-specified semantic version of that statement in a formal system. Informally, the logical form attempts to formalize a possibly ambiguous statement into a statement with a precise, unambiguous logical interpretation with respect to a formal system. In an ideal formal language, the meaning of a logical form can be determined unambiguously from syntax alone. Logical forms are semantic, not syntactic constructs; therefore, there may be more than one string that represents the same logical form in a given language.
Syllogisme disjonctifEn logique classique, un syllogisme disjonctif (où plus anciennement ponens modus tollendo) est une forme d'argument valide, qui prend la forme d'un syllogisme ayant une déclaration disjonctive dans l'une de ses prémisses. Soit la brèche est une brèche sécurisée, soit elle sera soumis à une amende. La brèche n'est pas une brèche de sécurité. Par conséquent, elle sera soumis à une amende. En logique propositionnelle, une syllogisme disjonctif (aussi connu sous le nom de l'argument de kneecapper, élimination ou, ou abrégé vE), est une règle d'inférence valide.
Règle d'inférenceDans un système logique, les régles d'inférence sont les règles qui fondent le processus de déduction, de dérivation ou de démonstration. L'application des règles sur les axiomes du système permet d'en démontrer les théorèmes. Une règle d'inférence est une fonction qui prend un -uplet de formules et rend une formule. Les formules arguments sont appelées « les prémisses » et la formule retournée est appelée la « conclusion ».
Système à la HilbertEn logique, les systèmes à la Hilbert servent à définir les déductions formelles en suivant un modèle proposé par David Hilbert au début du : un grand nombre daxiomes logiques exprimant les principales propriétés de la logique que l'on combine au moyen de quelques règles, notamment la règle de modus ponens, pour dériver de nouveaux théorèmes. Les systèmes à la Hilbert héritent du système défini par Gottlob Frege et constituent les premiers systèmes déductifs, avant l'apparition de la déduction naturelle ou du calcul des séquents, appelés parfois par opposition systèmes à la Gentzen.
Modus ponensLe modus ponens, ou détachement, est une figure du raisonnement logique concernant l'implication. Elle consiste à affirmer une implication (« si A alors B ») et à poser ensuite l'antécédent (« or A ») pour en déduire le conséquent (« donc B »). Le terme modus ponens est une abréviation du latin modus ponendo ponens qui signifie « le mode qui, en posant, pose ». Il vient de ce qu'en posant (affirmant) A, on pose (affirme) B (ponendo est le gérondif du verbe ponere qui signifie poser, et ponens en est le participe présent).
Transposition (logique)En logique des propositions, une transposition est une règle de remplacement valide qui permet d'échanger l'antécédent avec le conséquent d'une implication matérielle dans une preuve logique s'il sont tous les deux négatifs. C'est l'inférence de la vérité de « A implique B » à la vérité de « non-B implique non-A », et inversement. Il est très étroitement liée à la règle d'inférence modus tollens. La règle est la suivante : où « » est un symbole métalogique représentant "peut être remplacé dans une démonstration avec.
Stoic logicStoic logic is the system of propositional logic developed by the Stoic philosophers in ancient Greece. It was one of the two great systems of logic in the classical world. It was largely built and shaped by Chrysippus, the third head of the Stoic school in the 3rd-century BCE. Chrysippus's logic differed from Aristotle's term logic because it was based on the analysis of propositions rather than terms. The smallest unit in Stoic logic is an assertible (the Stoic equivalent of a proposition) which is the content of a statement such as "it is day".
SyllogismeEn logique, le syllogisme est un raisonnement logique mettant en relation au moins trois propositions : deux ou plus d'entre elles, appelées « prémisses », conduisent à une « conclusion ». Aristote a été le premier à le formaliser dans son Organon. Ces propositions sont généralement exprimées avec uniquement des prédicats unaires et relèvent donc de la logique monadique du premier ordre.