Continuous symmetryIn mathematics, continuous symmetry is an intuitive idea corresponding to the concept of viewing some symmetries as motions, as opposed to discrete symmetry, e.g. reflection symmetry, which is invariant under a kind of flip from one state to another. However, a discrete symmetry can always be reinterpreted as a subset of some higher-dimensional continuous symmetry, e.g. reflection of a 2 dimensional object in 3 dimensional space can be achieved by continuously rotating that object 180 degrees across a non-parallel plane.
Non-abelian groupIn mathematics, and specifically in group theory, a non-abelian group, sometimes called a non-commutative group, is a group (G, ∗) in which there exists at least one pair of elements a and b of G, such that a ∗ b ≠ b ∗ a. This class of groups contrasts with the abelian groups. (In an abelian group, all pairs of group elements commute). Non-abelian groups are pervasive in mathematics and physics. One of the simplest examples of a non-abelian group is the dihedral group of order 6. It is the smallest finite non-abelian group.
Group objectIn , a branch of mathematics, group objects are certain generalizations of groups that are built on more complicated structures than sets. A typical example of a group object is a topological group, a group whose underlying set is a topological space such that the group operations are continuous. Formally, we start with a C with finite products (i.e. C has a terminal object 1 and any two of C have a ).
Transformation infinitésimaleEn mathématique, une transformation infinitésimale est une petite transformation dans le sens où l'approximation au premier ordre est valable. Par exemple, pour un groupe à un paramètre agissant sur un espace de dimension finie, on aura où ε est un paramètre de la transformation, In la matrice identité de dimension n et A une matrice appelée générateur de la transformation. En général, une transformation T(ε) n'est pas linéaire, mais si son approximation au premier ordre est valable, alors elle s'écrit comme une somme de matrices.
Sous-groupe à un paramètreUn sous-groupe à un paramètre d'un groupe de Lie réel G est un morphisme de groupes de Lie c : R → G. Plus explicitement, c est une application différentiable vérifiant : En dérivant cette relation par rapport à la variable s et en évaluant en s = 0, il vient : où Lc(t) désigne la multiplication à gauche par c(t). Un sous-groupe à un paramètre s'obtient comme orbite de l'élément neutre par un champ de vecteurs invariant à gauche de G. Un tel champ X est déterminé par sa valeur X(e) en l'élément neutre e.
Linear complex structureIn mathematics, a complex structure on a real vector space V is an automorphism of V that squares to the minus identity, −I. Such a structure on V allows one to define multiplication by complex scalars in a canonical fashion so as to regard V as a complex vector space. Every complex vector space can be equipped with a compatible complex structure, however, there is in general no canonical such structure. Complex structures have applications in representation theory as well as in complex geometry where they play an essential role in the definition of almost complex manifolds, by contrast to complex manifolds.
Witt algebraIn mathematics, the complex Witt algebra, named after Ernst Witt, is the Lie algebra of meromorphic vector fields defined on the Riemann sphere that are holomorphic except at two fixed points. It is also the complexification of the Lie algebra of polynomial vector fields on a circle, and the Lie algebra of derivations of the ring C[z,z−1]. There are some related Lie algebras defined over finite fields, that are also called Witt algebras. The complex Witt algebra was first defined by Élie Cartan (1909), and its analogues over finite fields were studied by Witt in the 1930s.
Hilbert manifoldIn mathematics, a Hilbert manifold is a manifold modeled on Hilbert spaces. Thus it is a separable Hausdorff space in which each point has a neighbourhood homeomorphic to an infinite dimensional Hilbert space. The concept of a Hilbert manifold provides a possibility of extending the theory of manifolds to infinite-dimensional setting. Analogously to the finite-dimensional situation, one can define a differentiable Hilbert manifold by considering a maximal atlas in which the transition maps are differentiable.
Levi decompositionIn Lie theory and representation theory, the Levi decomposition, conjectured by Wilhelm Killing and Élie Cartan and proved by , states that any finite-dimensional real{Change real Lie algebra to a Lie algebra over a field of characterisitic 0} Lie algebra g is the semidirect product of a solvable ideal and a semisimple subalgebra. One is its radical, a maximal solvable ideal, and the other is a semisimple subalgebra, called a Levi subalgebra.
Variété parallélisableUne variété différentielle M de classe Ck est dite parallélisable si son fibré tangent est trivial, c'est-à-dire isomorphe, en tant que fibré vectoriel, à , où est un espace vectoriel de dimension Il revient au même de dire qu'il existe un espace vectoriel E et une forme différentielle telle que pour tout , est un isomorphisme d'espaces vectoriels ; ou encore qu'il existe champs de vecteurs linéairement indépendants en tout point de M, autrement dit un champ de repères. Un isomorphisme de fibrés vectoriels entre et s'appelle un parallèlisme.