If and only ifIn logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.
Connecteur logiqueEn logique, un connecteur logique est un opérateur booléen utilisé dans le calcul des propositions. Comme dans toute approche logique, il faut distinguer un aspect syntaxique et un aspect sémantique. D'un point de vue syntaxique, les connecteurs sont des opérateurs dans un langage formel pour lesquels un certain nombre de règles définissent leur usage, au besoin complétées par une sémantique. Si l'on se place dans la logique classique, l'interprétation des variables se fait dans les booléens ou dans une extension multivalente de ceux-ci.
LogiqueLa logique — du grec , qui est un terme dérivé de signifiant à la fois « raison », « langage » et « raisonnement » — est, dans une première approche, l'étude de l'inférence, c'est-à-dire des règles formelles que doit respecter toute argumentation correcte. Le terme aurait été utilisé pour la première fois par Xénocrate. La logique antique se décompose d'abord en dialectique et rhétorique. Elle est depuis l'Antiquité l'une des grandes disciplines de la philosophie, avec l'éthique (philosophie morale) et la physique (science de la nature).
Conditional proofA conditional proof is a proof that takes the form of asserting a conditional, and proving that the antecedent of the conditional necessarily leads to the consequent. The assumed antecedent of a conditional proof is called the conditional proof assumption (CPA). Thus, the goal of a conditional proof is to demonstrate that if the CPA were true, then the desired conclusion necessarily follows. The validity of a conditional proof does not require that the CPA be true, only that if it were true it would lead to the consequent.
Règle d'introduction (logique)Les règles d'introduction des connecteurs (disjonction, conjonction, implication, négation, etc.) sont des règles d'inférence que l'on trouve dans le calcul des séquents et la déduction naturelle. Elles jouent un rôle fondamental dans la description de ces systèmes, car elles permettent d'expliquer comment les connecteurs sont « introduits » dans le cours d'une démonstration. En dehors des règles structurelles, le calcul des séquents ne contient que des règles d'introduction et aucune règle d'élimination.
Syllogisme disjonctifEn logique classique, un syllogisme disjonctif (où plus anciennement ponens modus tollendo) est une forme d'argument valide, qui prend la forme d'un syllogisme ayant une déclaration disjonctive dans l'une de ses prémisses. Soit la brèche est une brèche sécurisée, soit elle sera soumis à une amende. La brèche n'est pas une brèche de sécurité. Par conséquent, elle sera soumis à une amende. En logique propositionnelle, une syllogisme disjonctif (aussi connu sous le nom de l'argument de kneecapper, élimination ou, ou abrégé vE), est une règle d'inférence valide.
Élimination de la disjonctionEn logique propositionnelle, lélimination de la disjonction (parfois nommée preuve par cas, ou lélimination du ou), est la forme d'argument valide et règle d'inférence qui permet d'éliminer une déclaration disjonctive d'une démonstration logique. Elle est l'inférence selon laquelle si une déclaration implique une déclaration , qu'une déclaration implique aussi , et que ou est vrai, alors est vrai. Par exemple: Si je suis à l'intérieur, j'ai mon portefeuille sur moi.
Disjonction logiqueLa disjonction logique, ou disjonction non exclusive, de deux assertions est une façon d'affirmer qu'au moins une de ces deux assertions est vraie (la première, la deuxième, ou les deux). Dans le langage logique ou mathématique, et dans les domaines techniques qui l'emploient, elle se traduit par le OU logique, un opérateur logique dans le calcul des propositions. La proposition obtenue en reliant deux propositions par cet opérateur s'appelle également leur disjonction ou leur somme logique.
Principe du tiers excluEn logique formelle, le principe du tiers exclu (ou "principium medii exclusi" [principe du milieu exclu] ou " tertium non datur" [une troisième possibilité n'est pas accordée] , ou simplement le « tiers exclu ») énonce qu'ou bien une proposition est vraie, ou bien sa négation est vraie. Par exemple, Socrate est vivant ou mort, et il n'y a pas de cas intermédiaire entre ces deux états de Socrate, c'est pourquoi on parle de « tiers-exclu » : tous les autres cas de figure sont nécessairement exclus.
Conjonction logiqueEn logique, la conjonction est une opération mise en œuvre par le connecteur binaire et. Le connecteur et est donc un opérateur binaire qui lie deux propositions pour en faire une autre. Si on admet chacune des deux propositions, alors on admettra la proposition qui en est la conjonction. En logique mathématique, le connecteur de conjonction est noté soit &, soit ∧. En théorie de la démonstration, plus particulièrement en calcul des séquents, la conjonction est régie par des règles d'introduction et des règles d'élimination.