Arithmétique élémentaireL’arithmétique élémentaire regroupe les rudiments de la connaissance des nombres telle qu'elle est présentée dans l'enseignement des mathématiques. Elle commence avec la comptine numérique, autrement dit la suite des premiers entiers à partir de 1, apprise comme une liste ou une récitation et utilisée pour dénombrer de petites quantités. Viennent ensuite les opérations d'addition et de multiplication par le biais des tables d'addition et de multiplication.
Expression (mathématiques)In mathematics, an expression or mathematical expression is a finite combination of symbols that is well-formed according to rules that depend on the context. Mathematical symbols can designate numbers (constants), variables, operations, functions, brackets, punctuation, and grouping to help determine order of operations and other aspects of logical syntax. Many authors distinguish an expression from a formula, the former denoting a mathematical object, and the latter denoting a statement about mathematical objects.
Division euclidiennethumb|Écriture de la division euclidienne de 30 par 7, le quotient est 4 et le reste 2.En mathématiques, et plus précisément en arithmétique, la division euclidienne ou division entière est une procédure de calcul qui, à deux entiers naturels appelés dividende et diviseur, associe deux autres entiers appelés quotient (quotient euclidien s'il y a ambiguïté) et reste. Initialement définie pour deux entiers naturels non nuls, elle se généralise aux entiers relatifs.
Singularité (mathématiques)En mathématiques, une singularité est en général un point, une valeur ou un cas dans lequel un certain objet mathématique n'est pas bien défini ou bien subit une transition. Ce terme peut donc avoir des significations très différentes en fonction du contexte. Par exemple, dans l'analyse élémentaire, on dit que . En théorie des singularités, le terme prend un sens différent. On dit, par exemple, En algèbre linéaire, une matrice carrée est dite singulière si elle n'est pas inversible.
BrahmasphutasiddhantaLe Brāhmasphuṭasiddhānta (ब्राह्मस्फुटसिद्धान्त), datant de 628, est le principal livre écrit par le mathématicien indien Brahmagupta. Il contient de nombreuses avancées en mathématiques : une bonne compréhension du zéro, des règles de manipulation des nombres positifs et négatifs, une méthode de calcul des racines carrés, des méthodes de résolution des équations linéaires et quadratiques, des règles pour les séries... C'est dans cet ouvrage que se trouvent démontrés l'identité de Brahmagupta et le théorème de Brahmagupta.
Zéro signéLe zéro signé est un zéro accompagné d'un signe. En arithmétique ordinaire, le nombre 0 n'a pas de signe, de sorte que −0, +0 et 0 sont identiques. Cependant, en informatique, certaines représentations des nombres admettent l'existence de deux zéros, souvent notés −0 (zéro négatif) et +0 (zéro positif), considérés comme égaux par les opérations de comparaison numérique mais avec des comportements différents possibles dans des opérations particulières.
Wheel theoryA wheel is a type of algebra (in the sense of universal algebra) where division is always defined. In particular, division by zero is meaningful. The real numbers can be extended to a wheel, as can any commutative ring. The term wheel is inspired by the topological picture of the real projective line together with an extra point ⊥ (bottom element) such as . A wheel can be regarded as the equivalent of a commutative ring (and semiring) where addition and multiplication are not a group but respectively a commutative monoid and a commutative monoid with involution.
Développement décimal de l'unitéEn mathématiques, le développement décimal périodique qui s'écrit 0,999..., que l'on dénote encore par ou ou , représente un nombre réel dont on peut montrer que c'est le nombre 1. En d'autres termes, les deux notations 0,999... et 1 sont deux notations différentes pour le même nombre. Les démonstrations mathématiques de cette identité ont été formulées avec des degrés variés de rigueur mathématique, et selon les préférences relatives à la définition des nombres réels, les hypothèses sous-jacentes, le contexte historique et le public visé.
Well-defined expressionIn mathematics, a well-defined expression or unambiguous expression is an expression whose definition assigns it a unique interpretation or value. Otherwise, the expression is said to be not well defined, ill defined or ambiguous. A function is well defined if it gives the same result when the representation of the input is changed without changing the value of the input. For instance, if takes real numbers as input, and if does not equal then is not well defined (and thus not a function).
IEEE 754En informatique, l’IEEE 754 est une norme sur l'arithmétique à virgule flottante mise au point par le Institute of Electrical and Electronics Engineers. Elle est la norme la plus employée actuellement pour le calcul des nombres à virgule flottante avec les CPU et les FPU. La norme définit les formats de représentation des nombres à virgule flottante (signe, mantisse, exposant, nombres dénormalisés) et valeurs spéciales (infinis et NaN), en même temps qu’un ensemble d’opérations sur les nombres flottants.