Mathématiques puresvignette|Formules mathématiques Les mathématiques pures (ou mathématiques fondamentales) regroupent les activités de recherche en mathématiques motivée par des raisons autres que celles de l'application pratique. Les mathématiques pures reposent sur un ensemble d'axiomes et sur un système logique, détachés de l'expérience et de la réalité. Il n'est cependant pas rare que des théories développées sans objectif pratique soient utilisées plus tard pour certaines applications, comme la géométrie riemannienne pour la relativité générale.
Algèbre tensorielleEn mathématiques, une algèbre tensorielle est une algèbre sur un corps dont les éléments (appelés tenseurs) sont représentés par des combinaisons linéaires de « mots » formés avec des vecteurs d'un espace vectoriel donné. Les seules relations de dépendance linéaire entre ces mots sont induites par les combinaisons linéaires entre les vecteurs. Si l'espace vectoriel sous-jacent est muni d'une base, son algèbre tensorielle s'identifie avec l'algèbre associative unitaire libre engendrée par cette base.
Demi-groupeEn mathématiques, plus précisément en algèbre générale, un demi-groupe (ou semi-groupe) est une structure algébrique constituée d'un ensemble muni d'une loi de composition interne associative. Il est dit commutatif si sa loi est de plus commutative. Un demi-groupe est un magma associatif. Un monoïde est un demi-groupe unifère, c'est-à-dire possédant un élément neutre. L'ensemble des entiers naturels non nuls muni de l'addition est un demi-groupe. Tout monoïde est un demi-groupe. Tout groupe est un demi-groupe.
Factorisation des polynômesEn mathématiques, la factorisation d'un polynôme consiste à écrire celui-ci comme produit de polynômes. Les factorisations intéressantes sont celles permettant d'écrire le polynôme initial en produit de plusieurs polynômes non inversibles. Un polynôme non inversible pour lequel aucune factorisation de ce type n'existe s'appelle un polynôme irréductible. La décomposition d'un polynôme en produits de polynômes irréductibles existe, et a une propriété d'unicité (à un facteur inversible près), pour tout polynôme à coefficients réels ou complexes.
Polynôme unitaireEn algèbre commutative, un polynôme unitaire, ou polynôme monique, est un polynôme non nul dont le coefficient dominant (le coefficient du terme de plus haut degré) est égal à 1. Un polynôme P est donc unitaire si et seulement s'il s'écrit sous la forme Sur les polynômes unitaires à coefficients dans un anneau commutatif A donné, la relation divise est une relation d'ordre partiel. Si A est un corps, alors tout polynôme non nul est associé à un polynôme unitaire et un seul.
Les Neuf Chapitres sur l'art mathématiquevignette|Les Neuf Chapitres sur l'art mathématique Les Neuf Chapitres sur l'art mathématique (九章算術 ou 九章算术 ou Jiǔzhāng Suànshù) est un livre anonyme chinois de mathématiques, compilé entre le et le au début de la période Han sur la base de morceaux datant d'avant la dynastie Qin. Plus ancien texte chinois après le Suàn shù shū, il est parvenu jusqu'à nous par le travail de copie des scribes et (des siècles plus tard) par impression. Un de ses commentaires les plus célèbres est celui de Liu Hui écrit en 263.
Substitution (logic)A substitution is a syntactic transformation on formal expressions. To apply a substitution to an expression means to consistently replace its variable, or placeholder, symbols with other expressions. The resulting expression is called a substitution instance, or instance for short, of the original expression. Where ψ and φ represent formulas of propositional logic, ψ is a substitution instance of φ if and only if ψ may be obtained from φ by substituting formulas for symbols in φ, replacing each occurrence of the same symbol by an occurrence of the same formula.
K-théorieEn mathématiques, la K-théorie est un outil utilisé dans plusieurs disciplines. En topologie algébrique, la sert de théorie de cohomologie. Une variante est utilisée en algèbre sous le nom de K-théorie algébrique. Les premiers résultats de la K-théorie ont été dans le cadre de la topologie algébrique, comme une théorie de cohomologie extraordinaire (elle ne vérifie pas l'axiome de dimension). Par la suite, ces méthodes ont été utilisées dans beaucoup d'autres domaines comme la géométrie algébrique, l'algèbre, la théorie des nombres, la théorie des opérateurs, etc.
NilradicalEn algèbre, le nilradical d'un anneau commutatif est un idéal particulier de cet anneau. Soit A un anneau commutatif. Le nilradical de A est l'ensemble des éléments nilpotents de A. En d'autres termes, c'est l'idéal radical de l'idéal réduit à 0. En notant Nil(A) le nilradical de A, on a les énoncés suivants : Nil(A) est un idéal ; l'anneau quotient A/Nil(A) est réduit, c'est-à-dire qu'il n'a pas d'éléments nilpotents hormis 0 ; Nil(A) est inclus dans chaque idéal premier de A ; si s est un élément de A qui n'appartient pas à Nil(A), alors il existe un idéal premier auquel s n'appartient pas ; si A n'est pas l'anneau nul, Nil(A) est l'intersection de tous les idéaux premiers de A et même, de tous ses .
Algèbre de HopfEn mathématiques, une algèbre de Hopf, du nom du mathématicien Heinz Hopf, est une bialgèbre qui possède en plus une opération (l'antipode) qui généralise la notion de passage à l'inverse dans un groupe. Ces algèbres ont été introduites à l'origine pour étudier la cohomologie des groupes de Lie. Les algèbres de Hopf interviennent également en topologie algébrique, en théorie des groupes et dans bien d'autres domaines. Enfin, ce qu'on appelle les groupes quantiques sont souvent des algèbres de Hopf « déformées » et qui ne sont en général ni commutatives, ni cocommutatives.