Explique la droite de régression des moindres carrés, les coefficients de corrélation, les valeurs aberrantes, les points influents et les résidus dans les modèles de régression.
Explorer la sélection des modèles dans les statistiques, discuter des principes, des modèles probabilistes, de l'évaluation des caractéristiques et des méthodes de visualisation des données.
Couvre les bases de la régression linéaire dans l'apprentissage automatique, en explorant ses applications dans la prédiction des résultats comme le poids de naissance et l'analyse des relations entre les variables.
Couvre les moindres carrés pondérés itératifs, la régression de Poisson et l'analyse bayésienne des données sur l'orge de printemps à l'aide de modèles mixtes.