Concepts associés (29)
Exposant de Liapounov
Dans l'analyse d'un système dynamique, l'exposant de Liapounov permet de quantifier la stabilité ou l'instabilité de ses mouvements. Un exposant de Liapounov peut être soit un nombre réel fini, soit ∞ ou –∞. Un mouvement instable a un exposant de Liapounov positif, un mouvement stable correspond à un exposant de Liapounov négatif. Les mouvements bornés d'un système linéaire ont un exposant de Liapounov négatif ou nul. L'exposant de Liapounov peut servir à étudier la stabilité (ou l'instabilité) des points d'équilibre des systèmes non linéaires.
Suite logistique
En mathématiques, une suite logistique est une suite réelle simple, mais dont la récurrence n'est pas linéaire. Sa relation de récurrence est Suivant la valeur du paramètre μ (dans [0; 4] pour assurer que les valeurs de x restent dans [0; 1]), elle engendre soit une suite convergente, soit une suite soumise à oscillations, soit une suite chaotique. Souvent citée comme exemple de la complexité de comportement pouvant surgir d'une relation non linéaire simple, cette suite fut popularisée par le biologiste Robert May en 1976.
Attracteur de Lorenz
L’attracteur de Lorenz est une structure fractale correspondant au comportement à long terme de l'oscillateur de Lorenz. L'attracteur montre comment les différentes variables du système dynamique évoluent dans le temps en une trajectoire non périodique. En 1963, le météorologue Edward Lorenz est le premier à mettre en évidence le caractère vraisemblablement chaotique de la météorologie. Le modèle de Lorenz, appelé aussi système dynamique de Lorenz ou oscillateur de Lorenz, est une modélisation simplifiée de phénomènes météorologiques basée sur la mécanique des fluides.
Ensemble de Julia
En dynamique holomorphe, l'ensemble de Julia et l'ensemble de Fatou sont deux ensembles complémentaires l'un de l'autre, définis à partir du comportement d'une fonction (ou d'une application) holomorphe par composition itérée avec elle-même. Alors que l'ensemble de Fatou est l'ensemble des points en lesquels un faible changement du point de départ entraîne un faible changement sur la suite de l'itération (stabilité), l'ensemble de Julia est quant à lui, essentiellement caractérisé par le fait qu'une petite perturbation au départ se répercute en un changement radical de cette suite (chaos).
Itération
En mathématiques, une itération désigne l'action de répéter un processus. Le calcul itératif permet l'application à des équations récursives. Le terme itération est issu du verbe latin iterare qui signifie « cheminer » ou de iter « chemin ». Le processus d'itération est employé fréquemment en algorithmique. Une itération en mathématiques peut se référer au processus d'itération d'une fonction, c'est-à-dire, appliquer une fonction à plusieurs reprises, en utilisant la même itération à la sortie qu'à l'entrée.
Diagramme de bifurcation
droite|vignette|Diagramme de bifurcation de la suite logistique. En mathématiques, et en particulier dans l'étude des systèmes dynamiques, un diagramme de bifurcation illustre les valeurs visitées asymptotiquement (points fixes, points périodiques, attracteurs chaotiques) par un système en fonction d'un paramètre. Fichier:Bifurcation DiagramB.png|Diagramme de bifurcation pour l'[[attracteur de Rössler]]. Fichier:Henon bifurcation map b=0.3.png|Diagramme de bifurcation pour l'[[attracteur de Hénon]].
Système dynamique
En mathématiques, en chimie ou en physique, un système dynamique est la donnée d’un système et d’une loi décrivant l'évolution de ce système. Ce peut être l'évolution d'une réaction chimique au cours du temps, le mouvement des planètes dans le système solaire (régi par la loi universelle de la gravitation de Newton) ou encore l'évolution de la mémoire d'un ordinateur sous l'action d'un programme informatique. Formellement on distingue les systèmes dynamiques à temps discrets (comme un programme informatique) des systèmes dynamiques à temps continu (comme une réaction chimique).
Théorie des bifurcations
La théorie des bifurcations, en mathématiques et en physique est l'étude de certains aspects des systèmes dynamiques. Une bifurcation intervient lorsqu'un petit changement d'un paramètre physique produit un changement majeur dans l'organisation du système. Des exemples classiques d'une bifurcation en sciences pures sont par exemple les rythmes circadiens de populations animales en biologie théorique et les solutions de météo en mathématique et physique non linéaire, en sciences de l'ingénieur il y a aussi le flambage d'une poutre élastique (l'expérience peut être faite avec une règle d'écolier) ou les transitions de phase de matériaux (température critique de bifurcation, concentration critique).
Point périodique
vignette|Diagramme explicatif du point périodique de période 4 du système dynamique discret f En mathématiques, un point périodique pour une fonction est un point fixe pour l’une des fonctions itérées. La période de ce point est alors la période de la suite récurrente associée. De tels points périodiques apparaissent facilement avec une suite logistique lorsque le paramètre μ dépasse la valeur 3. Le théorème de Charkovski donne un ordre sur les périodes pouvant apparaitre dans les suites récurrentes réelles simples associée à une fonction donnée.
Variété stable
Les variétés stables jouent un rôle central dans les systèmes dynamiques différentiables en temps continu. Cette notion est aussi au centre de l'homologie de Floer. Soit une fonction différentiable sur une variété différentielle compacte de dimension . Considérons une métrique riemannienne sur . Le champ de gradient de est défini par Un point critique est dit non dégénéré lorsque la hessienne est une forme blinéaire non dégénérée sur .

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.