Variété (géométrie)En mathématiques, et plus particulièrement en géométrie, la notion de variété peut être appréhendée intuitivement comme la généralisation de la classification qui établit qu'une courbe est une variété de dimension 1 et une surface est une variété de dimension 2. Une variété de dimension n, où n désigne un entier naturel, est un espace topologique localement euclidien, c'est-à-dire dans lequel tout point appartient à une région qui s'apparente à un tel espace.
Variété différentielleEn mathématiques, les variétés différentielles ou variétés différentiables sont les objets de base de la topologie différentielle et de la géométrie différentielle. Il s'agit de variétés, « espaces courbes » localement modelés sur l'espace euclidien de dimension n, sur lesquelles il est possible de généraliser une bonne part des opérations du calcul différentiel et intégral. Une variété différentielle se définit donc d'abord par la donnée d'une variété topologique, espace topologique localement homéomorphe à l'espace R.
Vecteur contravariant, covariant et covecteurUn vecteur contravariant est un vecteur, un vecteur covariant est une forme linéaire, encore appelé covecteur, ou encore vecteur dual. Et si on dispose d'un produit scalaire, on peut représenter une forme linéaire (= un vecteur covariant = un covecteur) par un vecteur à l'aide du théorème de représentation de Riesz (cette représentation dépend du choix du produit scalaire).
Règle du produitEn analyse mathématique, la règle du produit, aussi appelée règle de Leibniz, est une formule utilisée afin de trouver les dérivées de produits de fonctions. Sous sa forme la plus simple, elle s'énonce ainsi : En notation de Leibniz, cette formule s'écrit : Une application importante de la règle du produit est la méthode d'intégration par parties. Soit la fonction définie par : Pour trouver sa dérivée avec la règle du produit, on pose et . Les fonctions , et sont partout dérivables car polynomiales.
Convention de sommation d'EinsteinEn mathématiques et plus spécialement dans les applications de l'algèbre linéaire en physique, la convention de sommation d'Einstein ou notation d'Einstein est un raccourci de notation utile pour la manipulation des équations concernant des coordonnées. Selon cette convention, quand l'indice d'une variable apparaît deux fois dans un terme, on sous-entend la sommation sur toutes les valeurs que peut prendre cet indice. Cet indice est dit muet. On le fait figurer une fois en position supérieure, une fois en position inférieure.
Differentiable curveDifferential geometry of curves is the branch of geometry that deals with smooth curves in the plane and the Euclidean space by methods of differential and integral calculus. Many specific curves have been thoroughly investigated using the synthetic approach. Differential geometry takes another path: curves are represented in a parametrized form, and their geometric properties and various quantities associated with them, such as the curvature and the arc length, are expressed via derivatives and integrals using vector calculus.