Puissance d'un point par rapport à un cercleEn géométrie euclidienne du plan, la puissance d'un point M par rapport à un cercle de centre O et de rayon R est un nombre qui indique la position de M par rapport à ce cercle. Elle peut être définie comme P(M) = OM - R. Il existe plusieurs résultats pour différentes formules de calcul de la puissance d'un point, selon la position du point par rapport au cercle. Ils reposent tous sur la construction de droites sécantes au cercle, passant par le point.
AntiparallélogrammeL'antiparallélogramme ou contre-parallélogramme est un quadrilatère croisé dont les côtés non adjacents sont de même longueur. Ce n'est pas un parallélogramme : il a deux côtés opposés qui ne sont pas parallèles et même, qui se coupent. Dans un antiparallélogramme les angles opposés ont la même mesure. Les diagonales sont parallèles. L'antiparallélogramme admet un axe de symétrie qui est la médiatrice des diagonales. Les deux côtés opposés les plus longs ont leur point d'intersection situé sur cette médiatrice.
Trapèze circonscriptibledroite|vignette|300x300px|Un trapèze circonscriptible En géométrie euclidienne, un trapèze circonscriptible, également appelé trapèze tangent, est un trapèze dont les quatre côtés sont tous tangents à un cercle situé à l'intérieur du trapèze : le cercle inscrit. C'est un cas particulier de quadrilatère circonscriptible, dont au moins une paire de côtés opposés sont parallèles. Les losanges et carrés sont des exemples de trapèzes circonscriptibles.
Polygone dualEn géométrie, les polygones peuvent être associés par paires de duaux, où les sommets de l'un correspondent aux côtés de l'autre. vignette|upright=1.5|La construction « de Dorman Luke » du dual d'un polyèdre, montrant une face rhombique duale à une face rectangulaire. Les polygones réguliers sont autoduaux, c'est-à-dire qu'ils sont leur propre polygone dual. Le dual d'un polygone isogonal est un polygone isotoxal. Par exemple, le rectangle (isogonal) et le losange (isotoxal) sont duaux.
Quadrilatère équidiagonalvignette|300x300px| Un quadrilatère équidiagonal : en rouge ses diagonales (de longueur égales), en vert le losange de Varignon et en bleu, les bimédianes perpendiculaires. Un quadrilatère équidiagonal est un quadrilatère convexe dont les diagonales ont la même longueur. Les quadrilatères équidiagonaux étaient importants dans les mathématiques indiennes antiques, où les quadrilatères étaient classés en premier lieu selon qu'ils étaient équidiagonaux ou non.
Triangle de HéronIn geometry, a Heronian triangle (or Heron triangle) is a triangle whose side lengths a, b, and c and area A are all positive integers. Heronian triangles are named after Heron of Alexandria, based on their relation to Heron's formula which Heron demonstrated with the example triangle of sides 13, 14, 15 and area 84. Heron's formula implies that the Heronian triangles are exactly the positive integer solutions of the Diophantine equation that is, the side lengths and area of any Heronian triangle satisfy the equation, and any positive integer solution of the equation describes a Heronian triangle.