Trapèzethumb|Exemple de trapèze. Un trapèze est un quadrilatère possédant deux côtés opposés parallèles. Ces deux côtés parallèles sont appelés bases. Avec cette définition, les quadrilatères ABCD et ABDC de la figure sont tous deux des trapèzes (dont les côtés (AB) et (CD) sont parallèles). Certains auteurs imposent comme condition supplémentaire la convexité du quadrilatère, ce qui revient à exclure les « trapèzes croisés » tels que ABDC. Un quadrilatère convexe est un trapèze si et seulement s’il possède une paire d’angles consécutifs de somme égale à 180°, soit π radians.
Quadrilatère bicentriquevignette|Porisme de Poncelet pour les quadrilatères bicentriques ABCD et EFGH. En géométrie euclidienne, un quadrilatère bicentrique est un quadrilatère convexe possédant à la fois un cercle inscrit (tangent à ses quatre côtés) et un cercle circonscrit (passant par ses quatre sommets). Il découle de cette définition que les quadrilatères bicentriques ont les propriétés des quadrilatères circonscriptibles et celles des quadrilatères inscriptibles.
Isosceles trapezoidIn Euclidean geometry, an isosceles trapezoid (isosceles trapezium in British English) is a convex quadrilateral with a line of symmetry bisecting one pair of opposite sides. It is a special case of a trapezoid. Alternatively, it can be defined as a trapezoid in which both legs and both base angles are of equal measure, or as a trapezoid whose diagonals have equal length. Note that a non-rectangular parallelogram is not an isosceles trapezoid because of the second condition, or because it has no line of symmetry.
Formule de Bretschneidervignette|256x256px| En géométrie, la formule de Bretschneider permet de calculer l'aire d'un quadrilatère non croisé : où, , sont les longueurs des côtés du quadrilatère, le demi-périmètre, et et deux angles opposés quelconques . Remarquons que puisque . Cette formule fonctionne pour un quadrilatère convexe ou concave (mais non croisé), non forcément inscriptible. Elle contient la formule de Brahmagupta de l'aire d'un quadrilatère inscriptible (cas ), ainsi que la formule de Héron de l'aire d'un triangle (cas ).
Cerf-volant droitdroite|vignette| Cerf-volant droit avec ses cercles circonscrit inscrit. vignette|Quadrilatère circonscriptible divisé en quatre cerfs-volants droits. En géométrie euclidienne, un cerf-volant droit est un cerf-volant (quadrilatère dont les quatre côtés peuvent être regroupés en deux paires de côtés adjacents de même longueur) ayant deux angles droits opposés. Une condition équivalent est qu'il soit inscrit dans un cercle.
Inscribed figureIn geometry, an inscribed planar shape or solid is one that is enclosed by and "fits snugly" inside another geometric shape or solid. To say that "figure F is inscribed in figure G" means precisely the same thing as "figure G is circumscribed about figure F". A circle or ellipse inscribed in a convex polygon (or a sphere or ellipsoid inscribed in a convex polyhedron) is tangent to every side or face of the outer figure (but see Inscribed sphere for semantic variants).
Théorème de l'angle inscrit et de l'angle au centrethumb|Figure 1 : L'angle AOB mesure le double de l'angle AMB et de l'angle ANB. thumb|Figure 2 : angle inscrit AMB obtus, angle au centre AOB rentrant. En géométrie euclidienne plane, plus précisément dans la géométrie du cercle, les théorèmes de l'angle inscrit et de l'angle au centre établissent des relations liant les angles inscrits et les angles au centre interceptant un même arc. Le théorème de l'angle au centre affirme que, dans un cercle, un angle au centre mesure le double d'un angle inscrit interceptant le même arc (figure 1 et 2, ).
Points cocycliquesEn géométrie, des points du plan sont dits cocycliques s'ils appartiennent à un même cercle. Trois points non alignés du plan sont cocycliques. En effet, tout triangle possède un cercle circonscrit. vignette La propriété précédente est un corollaire du théorème de l'angle inscrit. Si sont les affixes respectives de , la condition précédente s'écrit aussi D'où en utilisant le birapport, la condition équivalente : Le théorème de Ptolémée donne une condition nécessaire et suffisante de cocyclicité de quatre points par leurs distances.
Théorème de Ptoléméethumb|Figure illustrant le théorème de Ptolémée. En géométrie euclidienne, le théorème de Ptolémée et sa réciproque énoncent l'équivalence entre la cocyclicité de 4 points et une relation algébrique faisant intervenir leurs distances. L'implication directe est attribuée à l'astronome et mathématicien grec Claude Ptolémée, qui s'en servit pour dresser la table des cordes, c'est-à-dire des sinus, dont il fit usage dans ses calculs liés à l'astronomie. Voici le texte grec du livre I chapitre 10 de l'Almageste, édition Heiberg p.
Théorème de Brahmaguptavignette| et implique En mathématiques, le théorème de Brahmagupta donne une condition nécessaire sur la perpendicularité des diagonales d'un quadrilatère inscriptible dans un cercle . Il est nommé ainsi en l'honneur du mathématicien indien Brahmagupta. On suppose que ABCD est un quadrilatère inscriptible qui a ses diagonales perpendiculaires, et nous voulons prouver que AF = FD. Nous allons donc montrer que AF et FD sont tous les deux égales à FM. Les angles FAM et CBM sont égaux (ce sont des angles inscrits qui interceptent le même arc de cercle).