CarréEn géométrie euclidienne, un carré est un quadrilatère convexe à quatre côtés de même longueur avec quatre angles droits. C’est donc un polygone régulier, qui est à la fois un losange, un rectangle, et par conséquent aussi un parallélogramme particulier. Dans le plan, un carré est invariant par quatre symétries axiales, par deux rotations d’angle droit et par une symétrie centrale par rapport à l’intersection de ses diagonales. Les premières représentations du carré datent de la préhistoire.
Trapèzethumb|Exemple de trapèze. Un trapèze est un quadrilatère possédant deux côtés opposés parallèles. Ces deux côtés parallèles sont appelés bases. Avec cette définition, les quadrilatères ABCD et ABDC de la figure sont tous deux des trapèzes (dont les côtés (AB) et (CD) sont parallèles). Certains auteurs imposent comme condition supplémentaire la convexité du quadrilatère, ce qui revient à exclure les « trapèzes croisés » tels que ABDC. Un quadrilatère convexe est un trapèze si et seulement s’il possède une paire d’angles consécutifs de somme égale à 180°, soit π radians.
Quadrilatère bicentriquevignette|Porisme de Poncelet pour les quadrilatères bicentriques ABCD et EFGH. En géométrie euclidienne, un quadrilatère bicentrique est un quadrilatère convexe possédant à la fois un cercle inscrit (tangent à ses quatre côtés) et un cercle circonscrit (passant par ses quatre sommets). Il découle de cette définition que les quadrilatères bicentriques ont les propriétés des quadrilatères circonscriptibles et celles des quadrilatères inscriptibles.
Isosceles trapezoidIn Euclidean geometry, an isosceles trapezoid (isosceles trapezium in British English) is a convex quadrilateral with a line of symmetry bisecting one pair of opposite sides. It is a special case of a trapezoid. Alternatively, it can be defined as a trapezoid in which both legs and both base angles are of equal measure, or as a trapezoid whose diagonals have equal length. Note that a non-rectangular parallelogram is not an isosceles trapezoid because of the second condition, or because it has no line of symmetry.
Formule de Bretschneidervignette|256x256px| En géométrie, la formule de Bretschneider permet de calculer l'aire d'un quadrilatère non croisé : où, , sont les longueurs des côtés du quadrilatère, le demi-périmètre, et et deux angles opposés quelconques . Remarquons que puisque . Cette formule fonctionne pour un quadrilatère convexe ou concave (mais non croisé), non forcément inscriptible. Elle contient la formule de Brahmagupta de l'aire d'un quadrilatère inscriptible (cas ), ainsi que la formule de Héron de l'aire d'un triangle (cas ).
Aire (géométrie)thumb|L'aire du carré vaut ici 4. En mathématiques, l'aire est une grandeur relative à certaines figures du plan ou des surfaces en géométrie dans l'espace. Le développement de cette notion mathématique est lié à la rationalisation du calcul de grandeur de surfaces agricoles, par des techniques d'arpentage. Cette évaluation assortie d'une unité de mesure est aujourd'hui plutôt appelée superficie. Informellement, l'aire permet d'exprimer un rapport de grandeur d'une figure relativement à une unité, par le biais de découpages et recollements, de déplacements et retournements et de passage à la limite par approximation.
Inscribed figureIn geometry, an inscribed planar shape or solid is one that is enclosed by and "fits snugly" inside another geometric shape or solid. To say that "figure F is inscribed in figure G" means precisely the same thing as "figure G is circumscribed about figure F". A circle or ellipse inscribed in a convex polygon (or a sphere or ellipsoid inscribed in a convex polyhedron) is tangent to every side or face of the outer figure (but see Inscribed sphere for semantic variants).
Théorème de l'angle inscrit et de l'angle au centrethumb|Figure 1 : L'angle AOB mesure le double de l'angle AMB et de l'angle ANB. thumb|Figure 2 : angle inscrit AMB obtus, angle au centre AOB rentrant. En géométrie euclidienne plane, plus précisément dans la géométrie du cercle, les théorèmes de l'angle inscrit et de l'angle au centre établissent des relations liant les angles inscrits et les angles au centre interceptant un même arc. Le théorème de l'angle au centre affirme que, dans un cercle, un angle au centre mesure le double d'un angle inscrit interceptant le même arc (figure 1 et 2, ).
Points cocycliquesEn géométrie, des points du plan sont dits cocycliques s'ils appartiennent à un même cercle. Trois points non alignés du plan sont cocycliques. En effet, tout triangle possède un cercle circonscrit. vignette La propriété précédente est un corollaire du théorème de l'angle inscrit. Si sont les affixes respectives de , la condition précédente s'écrit aussi D'où en utilisant le birapport, la condition équivalente : Le théorème de Ptolémée donne une condition nécessaire et suffisante de cocyclicité de quatre points par leurs distances.
Cercles inscrit et exinscrits d'un triangleÉtant donnés trois points non alignés A, B et C du plan, il existe quatre cercles tangents aux trois droites (AB), (AC) et (BC). Ce sont le cercle inscrit (celui qui est intérieur au triangle) et les cercles exinscrits du triangle ABC. Bissectrice Un cercle tangent aux trois droites (AB), (BC), (CA) doit posséder un centre équidistant de ces trois droites. Or l'ensemble des points équidistants de deux droites sécantes (d1) et (d2) forme deux droites perpendiculaires, constituées des quatre demi-droites bissectrices chacune d'un des quatre secteurs angulaires construits par les droites (d1) et (d2), et appelées bissectrices des droites (d1) et (d2).