Concept

Pôle et polaire

Concepts associés (10)
Conique
En géométrie euclidienne, une conique est une courbe plane algébrique, définie initialement comme l’intersection d'un cône de révolution (supposé prolongé à l’infini de part et d’autre du sommet) avec un plan. Lorsque le plan de coupe ne passe pas par le sommet du cône, la conique est dite non dégénérée et réalise l’une des trois formes de courbe suivantes : ellipse, parabole ou hyperbole (le cercle étant un cas particulier de l'ellipse, parfois appelé quatrième forme). Ces courbes sont caractérisées par un paramètre réel appelé excentricité.
Quadrangle complet
En géométrie plane, un quadrangle complet (parfois, simplement quadrangle) est la figure formée par quatre points A, B, C et D, tels que trois quelconques d'entre eux ne soient pas alignés : ce sont les sommets du quadrangle. Les six droites joignant ces points deux à deux sont les côtés du quadrangle. Deux côtés qui n'ont pas de sommet en commun sont dits opposés. Deux côtés opposés (non parallèles) ont un point commun appelé point diagonal du quadrangle.
Pappus d'Alexandrie
NOTOC Pappus d'Alexandrie — nom latinisé de Pappos d'Alexandrie, en grec — est l'un des plus importants mathématiciens de la Grèce antique. Il est né à Alexandrie en Égypte et a vécu au Très peu de choses sur sa vie sont connues. Les écrits nous suggèrent qu'il fut précepteur. Son principal ouvrage est connu sous le nom de Synagogè (paru vers 340 de notre ère). Il comprend au moins huit volumes qui nous sont parvenus, le reste ayant été perdu.
Birapport
Le birapport, ou rapport anharmonique selon la dénomination de Michel Chasles est un outil puissant de la géométrie, en particulier la géométrie projective. La notion remonte à Pappus d'Alexandrie, mais son étude systématique est réalisée en 1827 par Möbius. thumb|Les divisions sont supposées régulières. Le birapport de C, D par rapport à A, B est : . thumb|Les divisions sont supposées régulières. Le birapport de C, D par rapport à A, B est : .
Géométrie projective
En mathématiques, la géométrie projective est le domaine de la géométrie qui modélise les notions intuitives de perspective et d'horizon. Elle étudie les propriétés inchangées des figures par projection centrale. Le mathématicien et architecte Girard Desargues fonde la géométrie projective dans son Brouillon project d’une Atteinte aux evenemens des rencontres du cone avec un plan publié en 1639, où il l'utilise pour une théorie unifiée des coniques.
Involution (mathématiques)
En mathématiques, une involution est une application bijective qui est sa propre réciproque, c'est-à-dire par laquelle chaque élément est l'image de son image. C'est le cas par exemple du changement de signe dans l'ensemble des nombres réels, ou des symétries du plan ou de l'espace en géométrie euclidienne. En algèbre linéaire, les endomorphismes involutifs sont d'ailleurs appelés symétries. Des involutions apparaissent dans de nombreux domaines des mathématiques, notamment en combinatoire et en topologie.
Théorème de Pascal
droite|200x200px En géométrie projective, le théorème de Pascal est un théorème concernant un hexagone inscrit dans une conique . Étant donné un hexagone d'un plan projectif sur un corps commutatif quelconque, il y a équivalence entre les deux propositions suivantes : Les "côtés" de l'hexagone sont les droites joignant deux points consécutifs de l'hexagone. Si deux côtés opposés sont confondus, leur intersection est une droite.
Ellipse (mathématiques)
Infobox Polytope | nom = Ellipse | image = Ellipse infobox.gif | légende = Représentation d'une ellipse legend|texte=F et F|Foyers | type = Section conique | aire = | périmètre = | propriétés = En géométrie, une ellipse est une courbe plane fermée obtenue par l’intersection d’un cône de révolution avec un plan, à condition que celui-ci coupe l'axe de rotation du cône ou du cylindre : c'est une conique d'excentricité strictement comprise entre 0 et 1.
Hyperbole (mathématiques)
thumb|Hyperbole obtenue comme intersection d'un cône et d'un plan parallèle à l'axe du cône.Si l'on incline légèrement le plan, l'intersection sera encore une hyperbole tant que l'angle d'inclinaison reste inférieur à l'angle que fait une génératrice avec l'axe du cône. En mathématiques, une hyperbole est une courbe plane obtenue comme la double intersection d'un double cône de révolution avec un plan. Elle peut également être définie comme conique d'excentricité supérieure à 1, ou comme ensemble des points dont la différence des distances à deux points fixes est constante.
Parabole
vignette|Une parabole représentée par la fonction f(x)=x. La parabole est une courbe plane, symétrique par rapport à un axe, ayant approximativement la forme d'un U dont les branches s'écarteraient indéfiniment. Cette courbe intervient dans les problèmes les plus élémentaires de mécanique ou de mathématiques. En effet la trajectoire d'un projectile qui n'est soumis qu'à la pesanteur est une parabole, ou encore, en mathématiques, la représentation graphique des polynômes de degré 2 est une parabole.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.