Degree of a field extensionIn mathematics, more specifically field theory, the degree of a field extension is a rough measure of the "size" of the field extension. The concept plays an important role in many parts of mathematics, including algebra and number theory — indeed in any area where fields appear prominently. Suppose that E/F is a field extension. Then E may be considered as a vector space over F (the field of scalars). The dimension of this vector space is called the degree of the field extension, and it is denoted by [E:F].
Extension de GaloisEn mathématiques, une extension de Galois (parfois nommée extension galoisienne) est une extension normale séparable. L'ensemble des automorphismes de l'extension possède une structure de groupe appelée groupe de Galois. Cette structure de groupe caractérise l'extension, ainsi que ses sous-corps. Les extensions de Galois sont des structures largement utilisées pour la démonstration de théorèmes en théorie algébrique des nombres, comme le dernier théorème de Fermat, ou en théorie de Galois pure, comme le théorème d'Abel-Ruffini.
Extension séparableEn mathématiques, et plus spécifiquement en algèbre, une extension L d'un corps K est dite séparable si elle est algébrique et si le polynôme minimal de tout élément de L n'admet que des racines simples (dans une clôture algébrique de K). La séparabilité est une des propriétés des extensions de Galois. Toute extension finie séparable satisfait le théorème de l'élément primitif. Les corps dont toutes les extensions algébriques sont séparables (c'est-à-dire les corps parfaits) sont nombreux.
Corps de nombresEn mathématiques, un corps de nombres algébriques (ou simplement corps de nombres) est une extension finie K du corps Q des nombres rationnels. En particulier, c'est une extension algébrique : tous les éléments de K sont des nombres algébriques, dont le degré divise le degré de l'extension. C'est aussi une extension séparable car Q est de caractéristique nulle donc parfait. Tout sous-corps de C engendré par un nombre fini de nombres algébriques est un corps de nombres.
Groupe des quaternionsEn mathématiques et plus précisément en théorie des groupes, le groupe des quaternions est l'un des deux groupes non abéliens d'ordre 8. Il admet une représentation réelle irréductible de degré 4, et la sous-algèbre des matrices 4×4 engendrée par son image est un corps gauche qui s'identifie au corps des quaternions de Hamilton. Le groupe des quaternions est souvent désigné par le symbole Q ou Q8 et est écrit sous forme multiplicative, avec les 8 éléments suivants : Ici, 1 est l'élément neutre, et pour tout a dans Q.
Théorème d'Abel (algèbre)En mathématiques et plus précisément en algèbre, le théorème d'Abel, parfois appelé théorème d'Abel-Ruffini ou encore théorème de Ruffini, indique que pour tout entier n supérieur ou égal à 5, il n'existe pas de formule générale exprimant « par radicaux » les racines d'un polynôme quelconque de degré n, c'est-à-dire de formule n'utilisant que les coefficients, la valeur 1, les et l'extraction des racines n-ièmes.
Corps de décompositionEn mathématiques et plus précisément en algèbre dans la théorie des corps commutatifs, un corps de décomposition, ou parfois corps des racines ou encore corps de déploiement, d'un polynôme P non nul est une extension de corps minimale sur laquelle P est scindé. On montre qu'un polynôme non nul possède toujours un corps de décomposition, unique à isomorphisme près, et que celui-ci est une extension finie et normale. Si de plus le polynôme est séparable, c'est une extension de Galois.
Théorie de GaloisEn mathématiques et plus précisément en algèbre, la théorie de Galois est l'étude des extensions de corps commutatifs, par le biais d'une correspondance avec des groupes de transformations sur ces extensions, les groupes de Galois. Cette méthode féconde, qui constitue l'exemple historique, a essaimé dans bien d'autres branches des mathématiques, avec par exemple la théorie de Galois différentielle, ou la théorie de Galois des revêtements. Cette théorie est née de l'étude par Évariste Galois des équations algébriques.
Groupe de GaloisEn mathématiques, et plus spécifiquement en algèbre dans le cadre de la théorie de Galois, le groupe de Galois d'une extension de corps L sur un corps K est le groupe des automorphismes de corps de L laissant K invariant. Le groupe de Galois est souvent noté Gal(L/K). Si l'extension possède de bonnes propriétés, c’est-à-dire si elle est séparable et normale, on parle alors d'extension de Galois et les hypothèses du théorème fondamental de la théorie de Galois sont réunies.
Correspondance de GaloisEn mathématiques, une correspondance de Galois antitone est une généralisation, pour deux ordres partiels quelconques, de la correspondance entre sous-corps d'une extension galoisienne et sous-groupes de son groupe de Galois. Une correspondance de Galois isotone se définit de façon analogue, en inversant l'ordre sur le deuxième ensemble. Cette notion est reliée à celle d'opérateur de clôture. Soient et des fonctions définies sur deux ensembles ordonnés et . On vérifie facilement l'équivalence des deux définitions suivantes.