Gian-Carlo RotaGian-Carlo Rota, né le , à Vigevano, en Italie, mort le , est un mathématicien et philosophe américain, né en Italie. Né en Italie, il y demeure 13 ans. Sa famille émigre en Suisse, puis il entre au collège américain de Quito en Équateur, et enfin à l'université de Princeton et à Yale. Il mène ensuite sa carrière au MIT (Massachusetts Institute of Technology). Il ne pouvait faire cours sans une bouteille de Coca-Cola, et récompensait ses étudiants méritants par des prix singuliers.
Suite de polynômesEn mathématiques, une suite de polynômes est une suite de polynômes indexée par les entiers positifs 0, 1, 2, 3, ..., dans laquelle chaque indice est souvent égal au degré du polynôme correspondant. Diverses suites de polynômes spéciaux sont nommées ; parmi celles-ci se trouvent : Monômes Factorielles croissantes Factorielles décroissantes Polynômes d'Abel Polynômes de Bateman (ou de Bateman-Pasternack) Polynômes de Bell Polynômes de Bernoulli Polynômes cyclotomiques Polynômes de Fibonacci Polynômes de Jaco
Calcul ombralEn mathématiques, le calcul ombral est le nom d'un ensemble de techniques de calcul formel qui, avant les années 1970, était plutôt appelé calcul symbolique. Il s'agit de l'étude des similarités surprenantes entre certaines formules polynomiales a priori non reliées entre elles, et d'un ensemble de règles de manipulation (au demeurant assez peu claires) pouvant être utilisées pour les obtenir (mais non les démontrer).
Suite de ShefferEn mathématiques, et plus précisément en analyse combinatoire, une suite de Sheffer, nommée d'après Isador M. Sheffer, est une suite de polynômes satisfaisant à des conditions permettant le calcul ombral. Soit p une suite de polynômes (de variable x) telle que deg(pn) = n. On définit un opérateur linéaire Q par : Q p(x) = np(x) ; la famille des p étant une base, ceci définit Q pour tous les polynômes.
Falling and rising factorialsIn mathematics, the falling factorial (sometimes called the descending factorial, falling sequential product, or lower factorial) is defined as the polynomial The rising factorial (sometimes called the Pochhammer function, Pochhammer polynomial, ascending factorial, rising sequential product, or upper factorial) is defined as The value of each is taken to be 1 (an empty product) when These symbols are collectively called factorial powers. The Pochhammer symbol, introduced by Leo August Pochhammer, is the notation (x)_n , where n is a non-negative integer.
Cumulant (statistiques)En mathématiques et plus particulièrement en théorie des probabilités et en statistique, les cumulants d'une loi de probabilité sont des coefficients qui ont un rôle similaire à celui des moments. Les cumulants déterminent entièrement les moments et vice versa, c'est-à-dire que deux lois ont les mêmes cumulants si et seulement si elles ont les mêmes moments. L'espérance constitue le premier cumulant, la variance le deuxième et le troisième moment centré constitue le troisième cumulant.
Nombre de StirlingEn mathématiques, les nombres de Stirling apparaissent dans plusieurs problèmes combinatoires. Ils tirent leur nom de James Stirling, qui les a introduits au . Il en existe trois sortes, nommés les nombres de Stirling de première espèce signés et non signés, et les nombres de Stirling de seconde espèce. Diverses notations sont utilisées pour les nombres de Stirling, parmi lesquelles : nombres de Stirling de première espèce « signés » : nombres de Stirling de première espèce « non signés » : nombres de Stirling de seconde espèce : La notation avec crochets, analogue à celle utilisée pour les coefficients binomiaux, est due à Jovan Karamata, qui l'a proposée en 1935.
Polynôme de BellEn mathématiques, et plus précisément en combinatoire, un polynôme de Bell, nommé ainsi d'après le mathématicien Eric Temple Bell, est défini par: où la somme porte sur toutes les suites j1, j2, j3, ..., jn−k+1 d'entiers naturels telles que : et La somme est parfois appelée n-ème polynôme de Bell complet, et alors les polynômes B définis ci-dessus sont appelés des polynômes de Bell « partiels ». Les polynômes de Bell complets B peuvent être exprimés par le déterminant d’une matrice : avec δ le symbole de Kronecker.
Suite de polynômes orthogonauxEn mathématiques, une suite de polynômes orthogonaux est une suite infinie de polynômes p0(x), p1(x), p2(x) ... à coefficients réels, dans laquelle chaque pn(x) est de degré n, et telle que les polynômes de la suite sont orthogonaux deux à deux pour un produit scalaire de fonctions donné. Cette notion est utilisée par exemple en cryptologie ou en analyse numérique. Elle permet de résoudre de nombreux problèmes de physique, comme en mécanique des fluides ou en traitement du signal.
Eric Temple BellEric Temple Bell, né le et mort le , est un mathématicien et écrivain, notamment de science-fiction. Né à Peterhead en Écosse, Bell a passé presque toute sa vie aux États-Unis et est mort à Watsonville en Californie. Ses œuvres de fiction sont parues sous le pseudonyme de John Taine. En 1884 (il a 15 mois), la famille va s'établir à San José (Californie) ; elle retourne à Bedford en Angleterre après la mort du père en 1896. Bell étudie à la Bedford Modern School, où Edward Mann Langley l'encourage à mettre en valeur ses talents en mathématiques.