Forme indéterminéeEn mathématiques, une forme indéterminée est une opération apparaissant lors d'un calcul d'une limite d'une suite ou d'une fonction sur laquelle on ne peut conclure en toute généralité et qui nécessite une étude au cas par cas. Par exemple, on ne peut conclure de manière générale sur la limite de la somme de deux suites dont l'une tend vers et l'autre vers . Selon les cas, cette limite peut être nulle, égale à un réel non nul, être égale à ou ou bien même ne pas exister.
Compactification (mathématiques)vignette|Exemple de compactification En topologie, la compactification est un procédé général de plongement d'un espace topologique comme sous-espace dense d'un espace compact. Le plongement est appelé le compactifié. Un tel plongement existe si et seulement si l'espace est complètement régulier.
Forme de l'Universthumb|Les trois formes possibles de l'Univers (voir l'article courbure spatiale). Le modèle le plus probable en 2016 est celui de l'Univers plat. Le terme "forme de l'Univers", en cosmologie, désigne généralement soit la forme (la courbure et la topologie) d'une section spatiale de l'Univers (« forme de l'espace-temps »), soit, de façon plus générale, la forme de l'espace-temps tout entier. Selon les observations astronomiques, l'Univers apparaît plat, avec toutefois une marge d'erreur de 0,4 %.
Infiniment petitLes infinitésimaux (ou infiniment petits) ont été utilisés pour exprimer l'idée d'objets si petits qu'il n'y a pas moyen de les voir ou de les mesurer. Le mot vient de infinitesimus (latin du ), ce qui signifiait à l'origine l'élément dans une série. Selon la notation de Leibniz, si x est une quantité, dx et Δx peuvent représenter une quantité infinitésimale de x. Dans le langage courant, un objet infiniment petit est un objet qui est plus petit que toute mesure possible, donc non pas d'une taille zéro, mais si petit qu'il ne peut être distingué de zéro par aucun moyen disponible.
Arithmétique élémentaireL’arithmétique élémentaire regroupe les rudiments de la connaissance des nombres telle qu'elle est présentée dans l'enseignement des mathématiques. Elle commence avec la comptine numérique, autrement dit la suite des premiers entiers à partir de 1, apprise comme une liste ou une récitation et utilisée pour dénombrer de petites quantités. Viennent ensuite les opérations d'addition et de multiplication par le biais des tables d'addition et de multiplication.
Gravitational potentialIn classical mechanics, the gravitational potential at a point in space is equal to the work (energy transferred) per unit mass that would be needed to move an object to that point from a fixed reference point. It is analogous to the electric potential with mass playing the role of charge. The reference point, where the potential is zero, is by convention infinitely far away from any mass, resulting in a negative potential at any finite distance.
John WallisJohn Wallis, né le à Ashford, et mort le à Oxford, est un mathématicien anglais. Ses travaux sont précurseurs de ceux de Newton. Il est également précurseur de la phonétique, de l'éducation des sourds et de l'orthophonie. Wallis a fait ses études à Cambridge, à l'Emmanuel College d'abord, puis au Queens' College. Étudiant d'abord la théologie, il est ordonné en 1640. Il se réoriente ensuite vers les mathématiques et montre un grand talent pour la cryptanalyse durant la guerre civile, en décryptant les messages des royalistes.
Dedekind-infinite setIn mathematics, a set A is Dedekind-infinite (named after the German mathematician Richard Dedekind) if some proper subset B of A is equinumerous to A. Explicitly, this means that there exists a bijective function from A onto some proper subset B of A. A set is Dedekind-finite if it is not Dedekind-infinite (i.e., no such bijection exists). Proposed by Dedekind in 1888, Dedekind-infiniteness was the first definition of "infinite" that did not rely on the definition of the natural numbers.
Droite réelle achevéeEn mathématiques, la droite réelle achevée désigne l'ensemble ordonné constitué des nombres réels auxquels sont adjoints deux éléments supplémentaires : un plus grand élément, noté +∞ et un plus petit élément, noté –∞. Elle est notée [–∞, +∞], R ∪ {–∞, +∞} ou (notation toutefois ambiguë, car la barre signifie généralement "complémentaire" en théorie des ensembles, ou "adhérence" en topologie). Cet ensemble est très utile en analyse, notamment pour généraliser les formules et théorèmes sur les limites sans avoir à effectuer une disjonction des cas, et dans certaines théories de l'intégration.
Lieu géométriqueEn mathématiques, un lieu géométrique est un ensemble de points remplissant une condition en fonction de son axe ou de son nombre de points, données par un problème de construction géométrique (par exemple à partir d'un point mobile sur une courbe) ou par des équations ou inéquations reliant des fonctions de points (notamment des distances). La médiatrice d'un segment est le lieu des points du plan à égale distance des extrémités de ce segment. L’arc capable est le lieu des points d’où l’on voit un segment sous un angle donné.