Concepts associés (16)
Interpolation numérique
En analyse numérique (et dans son application algorithmique discrète pour le calcul numérique), l'interpolation est une opération mathématique permettant de remplacer une courbe ou une fonction par une autre courbe (ou fonction) plus simple, mais qui coïncide avec la première en un nombre fini de points (ou de valeurs) donnés au départ. Suivant le type d'interpolation, outre le fait de coïncider en un nombre fini de points ou de valeurs, il peut aussi être demandé à la courbe ou à la fonction construite de vérifier des propriétés supplémentaires.
Phénomène de Runge
droite|vignette|La courbe rouge est la fonction de Runge ; la courbe bleue est le polynôme interpolateur de degré 5 et la courbe verte est le polynôme interpolateur de degré 9. L'approximation est de plus en plus mauvaise. Dans le domaine mathématique de l'analyse numérique, le phénomène de Runge se manifeste dans le contexte de l'interpolation polynomiale, en particulier l'interpolation de Lagrange. Avec certaines fonctions (même analytiques), l'augmentation du nombre n de points d'interpolation ne constitue pas nécessairement une bonne stratégie d'approximation.
Interpolation lagrangienne
En analyse numérique, les polynômes de Lagrange, du nom de Joseph-Louis Lagrange, permettent d'interpoler une série de points par un polynôme qui passe exactement par ces points appelés aussi nœuds. Cette technique d'interpolation polynomiale a été découverte par Edward Waring en 1779 et redécouverte plus tard par Leonhard Euler en 1783. C'est un cas particulier du théorème des restes chinois. On se donne n + 1 points (avec les xi distincts deux à deux).
Polynôme de Tchebychev
En mathématiques, un polynôme de Tchebychev est un terme de l'une des deux suites de polynômes orthogonaux particulières reliées à la formule de Moivre. Les polynômes de Tchebychev sont nommés ainsi en l'honneur du mathématicien russe Pafnouti Lvovitch Tchebychev. Il existe deux suites de polynômes de Tchebychev, l'une nommée polynômes de Tchebychev de première espèce et notée T et l'autre nommée polynômes de Tchebychev de seconde espèce et notée U (dans les deux cas, l'entier naturel n correspond au degré).
Interpolation newtonienne
En analyse numérique, l'interpolation newtonienne, du nom d'Isaac Newton, est une méthode d'interpolation polynomiale permettant d'obtenir le polynôme de Lagrange comme combinaison linéaire de polynômes de la « base newtonienne ». Contrairement à l'interpolation d'Hermite par exemple, cette méthode ne diffère de l'interpolation lagrangienne que par la façon dont le polynôme est calculé, le polynôme d'interpolation qui en résulte est le même. Pour cette raison on parle aussi plutôt de la forme de Newton du polynôme de Lagrange.
Interpolation d'Hermite
thumb|Comparaison graphique entre interpolation lagrangienne (en rouge) et hermitienne (en bleu) de la fonction (en noir) en trois points équidistants -1, 1/2, 2. En analyse numérique, l'interpolation d'Hermite, nommée d'après le mathématicien Charles Hermite, est une extension de l'interpolation de Lagrange, qui consiste, pour une fonction dérivable donnée et un nombre fini de points donnés, à construire un polynôme qui est à la fois interpolateur (c'est-à-dire dont les valeurs aux points donnés coïncident avec celles de la fonction) et osculateur (c'est-à-dire dont les valeurs de la dérivée aux points donnés coïncident avec celles de la dérivée de la fonction).
Spline
vignette|Exemple de spline quadratique. En mathématiques appliquées et en analyse numérique, une spline est une fonction définie par morceaux par des polynômes. Spline est un terme anglais qui, lorsqu'il est utilisé en français, est généralement prononcé , à la française. Il désigne une réglette de bois souple appelée cerce en français. Toutefois, dans l'usage des mathématiques appliquées, le terme anglais spline est généralisé et le mot français cerce ignoré.
Calcul numérique d'une intégrale
En analyse numérique, il existe une vaste famille d’algorithmes dont le but principal est d’estimer la valeur numérique de l’intégrale définie sur un domaine particulier pour une fonction donnée (par exemple l’intégrale d’une fonction d’une variable sur un intervalle). Ces techniques procèdent en trois phases distinctes : Décomposition du domaine en morceaux (un intervalle en sous-intervalles contigus) ; Intégration approchée de la fonction sur chaque morceau ; Sommation des résultats numériques ainsi obtenus.
Polynôme de Bernstein
Les polynômes de Bernstein, nommés ainsi en l'honneur du mathématicien russe Sergueï Bernstein (1880-1968), permettent de donner une démonstration constructive et probabilistedu théorème d'approximation de Weierstrass. Ils sont également utilisés dans la formulation générale des courbes de Bézier. Pour un degré m ≥ 0, il y a m + 1 polynômes de Bernstein B, ..., B définis, sur l'intervalle [0 ; 1], par où les sont les coefficients binomiaux. Les m + 1 polynômes de Bernstein forment une base de l'espace vectoriel des polynômes de degré au plus m.
Monomial basis
In mathematics the monomial basis of a polynomial ring is its basis (as a vector space or free module over the field or ring of coefficients) that consists of all monomials. The monomials form a basis because every polynomial may be uniquely written as a finite linear combination of monomials (this is an immediate consequence of the definition of a polynomial). The polynomial ring K[x] of univariate polynomials over a field K is a K-vector space, which has as an (infinite) basis.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.