Rapport (mathématiques)En sciences, un rapport est le quotient de deux valeurs qui se rapportent à des grandeurs de la même espèce. Quand le quotient se rapporte à des grandeurs d'espèces différentes, on parle de taux. Un rapport est une grandeur sans dimension : il ne conserve aucune trace des grandeurs qu'il compare. Un rapport s'exprime souvent en pourcentage. Dans les spécialités les plus en relation avec l'aire anglophone, on emploie souvent le mot d'origine latine , dont la définition est identique.
Racine carrée de troisLa racine carrée de trois, notée ou 3, est, en mathématiques, le nombre réel positif dont le carré est 3 exactement. Elle vaut approximativement et une bonne approximation fractionnaire en est 97/56 (à 10 près). On l’appelle parfois constante de Théodore ,Théodore de Cyrène ayant démontré son irrationalité. le nombre 3 ayant deux racines carrées réelles, devrait se prononcer racine carrée positive de 3, mais on le prononce simplement racine carrée de 3, voire racine de 3 pour simplifier.
Hippase de MétaponteHippase de Métaponte est un philosophe et mathématicien grec pythagoricien qui aurait vécu autour de 500 Très peu de choses sont connues de sa vie et de sa pensée. Son nom est souvent associé à la découverte de l'existence de grandeurs incommensurables (on dirait aujourd'hui que le rapport de deux telles grandeurs est un nombre irrationnel), ceci suivant des sources tardives. Celles-ci sont cependant peu cohérentes entre elles, et ce que la tradition attribue à Hippase peut résulter d'amalgames avec d'autres personnages.
Infinithumb|∞ : le symbole infini. Le mot « infini » (-e, -s) est un adjectif servant à qualifier quelque chose qui n'a pas de limite en nombre ou en taille. Il vient du latin infīnītus, dérivé de fīnītus « limité » (avec in-, préfixe négatif), issu lui-même du verbe fīnĭo, fīnīre (« délimiter », mais aussi : « préciser », « déterminer », et intransitivement « finir »), et du nom fīnis (souvent au pluriel, fīnes : « bornes, limites d'un champ », « frontières d'un pays ») ; il signifie donc, littéralement « qui est sans borne », mais aussi « indéterminé » et « indéfini ».
ApproximationUne approximation est une représentation imprécise ayant toutefois un lien étroit avec la quantité ou l’objet qu’elle reflète : approximation d’un nombre (de π par 3,14, de la vitesse instantanée d’un véhicule par sa vitesse moyenne entre deux points), d’une fonction mathématique, d’une solution d’un problème d’optimisation, d’une forme géométrique, d’une loi physique. Lorsqu’une partie de l’information nécessaire fait défaut, une approximation peut se substituer à une représentation exacte.
Nombre d'orvignette|upright=1.2|La proportion définie par a et b est dite d'« extrême et moyenne raison » lorsque a est à b ce que est à a, soit : lorsque Le rapport a/b est alors égal au nombre d'or (phi). Le nombre d'or (ou section dorée, proportion dorée, ou encore divine proportion) est une proportion, définie initialement en géométrie comme l'unique rapport a/b entre deux longueurs a et b telles que le rapport de la somme a + b des deux longueurs sur la plus grande (a) soit égal à celui de la plus grande (a) sur la plus petite (b), ce qui s'écrit : avec Le découpage d'un segment en deux longueurs vérifiant cette propriété est appelé par Euclide découpage en « extrême et moyenne raison ».
Racine cubiquevignette|Courbe représentative de la fonction racine cubique sur R. En mathématiques, la racine cubique d'un nombre réel est l'unique nombre réel dont le cube (c'est-à-dire la puissance ) vaut ; en d'autres termes, . La racine cubique de est notée . On peut également parler des racines cubiques d'un nombre complexe. De façon générale, on appelle racine cubique d'un nombre (réel ou complexe) tout nombre solution de l'équation : Si est réel, cette équation a dans R une unique solution, qu'on appelle la racine cubique du réel : .
Leonardo Fibonaccithumb|right|upright 1.32|Statue de Léonard de Pise, dans sa ville natale. Leonardo Fibonacci ou « Léonard de Pise » (vers 1170 à Pise - vers 1250) est un mathématicien italien connu notamment par la suite de Fibonacci. Ses travaux revêtent une importance considérable car ils sont le chainon apportant notamment la notation des chiffres indo-arabes aux mathématiques de l'Occident. L'homme est dénommé dans les manuscrits comme Leonardus Pisanus, « Léonard de Pise », ou encore Leonardus filius Bonacci, Leonardus Pisanus de filiis Bonacci et Leonardus Bigollus.
Commensurabilité (mathématiques)La commensurabilité est un terme mathématique essentiellement employé en histoire des mathématiques. Utilisé principalement dans la Grèce antique, il correspond au concept actuel de nombre rationnel. En mathématiques, deux grandeurs de même nature (deux longueurs, deux aires, deux volumes, etc.) non nulles a et b sont commensurables si et seulement s'il existe une unité u de ces grandeurs dont a et b soient multiples, i.e. tels qu'il existe un couple d'entiers (m, n) tels que a = mu et b = nu.
Proof by contradictionIn logic, proof by contradiction is a form of proof that establishes the truth or the validity of a proposition, by showing that assuming the proposition to be false leads to a contradiction. Although it is quite freely used in mathematical proofs, not every school of mathematical thought accepts this kind of nonconstructive proof as universally valid. More broadly, proof by contradiction is any form of argument that establishes a statement by arriving at a contradiction, even when the initial assumption is not the negation of the statement to be proved.