Hill tetrahedronIn geometry, the Hill tetrahedra are a family of space-filling tetrahedra. They were discovered in 1896 by M. J. M. Hill, a professor of mathematics at the University College London, who showed that they are scissor-congruent to a cube. For every , let be three unit vectors with angle between every two of them. Define the Hill tetrahedron as follows: A special case is the tetrahedron having all sides right triangles, two with sides and two with sides . Ludwig Schläfli studied as a special case of the orthoscheme, and H.
Troisième problème de Hilbertvignette|Illustration de l'invariant de Dehn Le troisième problème de Hilbert est l'un des 23 problèmes de Hilbert. Considéré comme le plus facile, il traite de la géométrie des polyèdres. David Hilbert conjectura que ce n'était pas toujours vrai. Ce fut confirmé dans l'année par son élève, Max Dehn, qui fournit un contre-exemple. Pour le problème analogue concernant les polygones, la réponse est affirmative. Le résultat est connu sous le nom du théorème de Wallace-Bolyai-Gerwien.
Diagramme de Coxeter-DynkinEn géométrie, un diagramme de Coxeter-Dynkin est un graphe représentant un ensemble relationnel de miroirs (ou d'hyperplans de réflexion) dans l'espace pour une construction kaléidoscopique. En tant que graphe lui-même, le diagramme représente les groupes de Coxeter, chaque nœud du graphe représente un miroir (facette du domaine) et chaque branche du graphe représente l'ordre de l'angle diédral entre deux miroirs (sur une arête du domaine). En plus, les graphes ont des anneaux (cercles) autour des nœuds pour les miroirs actifs représentant un polytope précis.