Concept

Algèbre d'un monoïde

Concepts associés (8)
Anneau (mathématiques)
vignette|Richard Dedekind - 1870 En algèbre, un anneau est un ensemble muni de deux lois de composition interne appelées addition et multiplication, qui vérifient des propriétés analogues à celles de ces opérations sur les entiers relatifs. Plus précisément, deux définitions sont représentées dans la littérature mathématique, selon la considération d'un élément neutre : la majorité des sources récentes définissent un « anneau » comme un anneau unitaire, avec la multiplication ayant un élément neutre ; tandis que, selon de nombreux ouvrages, la présence d'une unité multiplicative n'est pas requise, et ce type d'anneau est ailleurs dénommé pseudo-anneau.
Polynôme formel
En algèbre, le terme de polynôme formel, ou simplement polynôme, est le nom générique donné aux éléments d'une structure construite à partir d'un ensemble de nombres. On considère un ensemble A de nombres, qui peut être celui des entiers ou des réels, et on lui adjoint un élément X, appelé indéterminée. La structure est constituée par les nombres, le polynôme X, les puissances de X multipliées par un nombre, aussi appelés monômes (de la forme aX), ainsi que les sommes de monômes. La structure est généralement notée A[X].
Algèbre d'un groupe fini
En mathématiques, l'algèbre d'un groupe fini est un cas particulier d'algèbre d'un monoïde qui s'inscrit dans le cadre de la théorie des représentations d'un groupe fini. Une algèbre d'un groupe fini est la donnée d'un groupe fini, d'un espace vectoriel de dimension l'ordre du groupe et d'une base indexée par le groupe. La multiplication des éléments de la base est obtenue par la composition des index à l'aide de la loi du groupe, elle est prolongée sur toute la structure par linéarité.
Algèbre générale
L'algèbre générale, ou algèbre abstraite, est la branche des mathématiques qui porte principalement sur l'étude des structures algébriques et de leurs relations. L'appellation algèbre générale s'oppose à celle d'algèbre élémentaire ; cette dernière enseigne le calcul algébrique, c'est-à-dire les règles de manipulation des formules et des expressions algébriques. Historiquement, les structures algébriques sont apparues dans différents domaines des mathématiques, et n'y ont pas été étudiées séparément.
Algèbre graduée
vignette|Un organigramme de diverses structures algébriques et leurs relations les unes avec les autres. En mathématiques, en algèbre linéaire, on appelle algèbre graduée une algèbre dotée d'une structure supplémentaire, appelée graduation. Soit A une algèbre sur un corps (ou plus généralement sur un anneau) K. Une graduation sur A est la donnée d’une famille de sous-espaces vectoriels de A vérifiant : c'est-à-dire que . L’algèbre A est alors dite graduée (parfois N-graduée, comme cas particulier de la notion d'algèbre M-graduée pour un monoïde M).
Module sur un anneau
En mathématiques, et plus précisément en algèbre générale, au sein des structures algébriques, : pour un espace vectoriel, l'ensemble des scalaires forme un corps tandis que pour un module, cet ensemble est seulement muni d'une structure d'anneau (unitaire, mais non nécessairement commutatif). Une partie des travaux en théorie des modules consiste à retrouver les résultats de la théorie des espaces vectoriels, quitte pour cela à travailler avec des anneaux plus maniables, comme les anneaux principaux.
Catégorie des anneaux
En mathématiques, la catégorie des anneaux est une construction qui rend compte abstraitement des propriétés des anneaux en algèbre. Dans ce contexte, « anneau » signifie toujours anneau unitaire. La catégorie des anneaux, notée Ring, est la catégorie définie ainsi : Les objets sont les anneaux ; Les morphismes sont les morphismes d'anneaux, avec la composition usuelle, et l'identité est la fonction identité sur un anneau donné. La sous-catégorie pleine de Ring, dont les objets sont les anneaux commutatifs, forme la catégorie des anneaux commutatifs, notée CRing.
Foncteur adjoint
L'adjonction est une situation omniprésente en mathématiques, et formalisée en théorie des catégories par la notion de foncteurs adjoints. Une adjonction entre deux catégories et est une paire de deux foncteurs et vérifiant que, pour tout objet X dans C et Y dans D, il existe une bijection entre les ensembles de morphismes correspondants et la famille de bijections est naturelle en X et Y. On dit que F et G sont des foncteurs adjoints et plus précisément, que F est « adjoint à gauche de G » ou que G est « adjoint à droite de F ».

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.