Nombre parfaitEn arithmétique, un nombre parfait est un entier naturel égal à la moitié de la somme de ses diviseurs ou encore à la somme de ses diviseurs stricts. Plus formellement, un nombre parfait n est un entier tel que σ(n) = 2n où σ(n) est la somme des diviseurs positifs de n. Ainsi 6 est un nombre parfait car ses diviseurs entiers sont 1, 2, 3 et 6, et il vérifie bien 2 × 6 = 12 = 1 + 2 + 3 + 6, ou encore 6 = 1 + 2 + 3. Voir la . Dans le Livre IX de ses Éléments, Euclide, au , a démontré que si M = 2 − 1 est premier, alors M(M + 1)/2 = 2(2 – 1) est parfait.
Somme (arithmétique)En mathématiques, la somme de deux nombres est le résultat de leur addition. Les éléments additionnés s’appellent les termes de la somme. Elle se calcule de différentes manières selon le système de numération employé. Du fait de la commutativité et de l'associativité de l'addition, la somme d'un ensemble fini de nombres est bien définie indépendamment de l'ordre dans lequel est faite l'addition, mais il n'existe pas toujours de formule réduite pour l'exprimer.
Nombre pentagonalEn mathématiques, un nombre pentagonal est un nombre figuré qui peut être représenté par un pentagone. Pour tout entier n ≥ 1, d'après les formules générales pour les nombres polygonaux, le n-ième nombre pentagonal est donc la somme des n premiers termes de la suite arithmétique de premier terme 1 et de raison 3 : soit le tiers du (3n – 1)-ième nombre triangulaire et les dix premiers sont 1, 5, 12, 22, 35, 51, 70, 92, 117 et 145 ().
Coefficient binomialEn mathématiques, les coefficients binomiaux, ou coefficients du binôme, définis pour tout entier naturel n et tout entier naturel k inférieur ou égal à n, donnent le nombre de parties à k éléments d'un ensemble à n éléments. On les note - qui se lit « k parmi n » - ou , la lettre C étant l'initiale du mot « combinaison » Les coefficients binomiaux s'expriment à l'aide de la fonction factorielle : Ils interviennent dans de nombreux domaines des mathématiques : développement du binôme en algèbre, dénombrements, développement en série, lois de probabilités, etc.
Suite définie par récurrenceEn mathématiques, une suite définie par récurrence est une suite définie par son (ou ses) premier(s) terme(s) et par une relation de récurrence, qui définit chaque terme à partir du précédent ou des précédents lorsqu'ils existent. Une relation de récurrence est une équation dans laquelle l'expression de plusieurs termes de la suite apparait, par exemple : ou ou ou si l'on se place dans les suites de mots sur l'alphabet : Si la relation de récurrence a une « bonne » présentation, cela permet de calculer l'expression du terme d'indice le plus élevé en fonction de l'expression des autres.
Nombre pyramidal carréEn arithmétique géométrique, un nombre pyramidal carré est un nombre figuré qui peut être représenté par une pyramide de base carrée, dont chaque couche représente un nombre carré. Les dix premiers sont 1, 1+4 = 5, 5+9 = 14, 14+16 = 30, 55, 91, 140, 204, 285 et 385. On montre par récurrence que pour tout entier n ≥ 1, le n-ième nombre pyramidal carré, somme des n premiers nombres carrés, est égal à : Les deux seuls nombres pyramidaux carrés qui sont des nombres carrés sont P = 1 = 1 et P = 4 900 = 70.