Couvre les processus de Markov, les densités de transition et la distribution sous réserve d'information, en discutant de la classification des états et des distributions fixes.
Se penche sur la preuve du théorème du taux de convergence pour une chaîne de Markov ergodique, en mettant laccent sur les valeurs propres et les propriétés déquilibre détaillées.
Explore les résultats de convergence pour la réversibilité périodique des cas dans les chaînes Markov, couvrant les chaînes irréductibles, la récurrence positive, les processus réversibles et les promenades aléatoires sur des graphiques finis.
Couvre la théorie de l'échantillonnage de Markov Chain Monte Carlo (MCMC) et discute des conditions de convergence, du choix de la matrice de transition et de l'évolution de la distribution cible.
Plonge dans les chaînes de Markov en analysant un scénario avec deux puces se déplaçant dans des directions opposées, explorant les matrices de transition et les probabilités au fil du temps.
Explore les valeurs propres et les vecteurs propres des chaînes de Markov, en se concentrant sur les taux de convergence et les propriétés matricielles.