Magnitude (mathematics)In mathematics, the magnitude or size of a mathematical object is a property which determines whether the object is larger or smaller than other objects of the same kind. More formally, an object's magnitude is the displayed result of an ordering (or ranking) of the class of objects to which it belongs. In physics, magnitude can be defined as quantity or distance.
Méthodes de calcul d'intégrales de contourEn analyse complexe, lintégration de contour est une technique de calcul d'intégrale le long de chemins sur le plan complexe L'intégration de contour est fortement liée au calculs de résidus, une méthode de calcul utilisée pour évaluer des intégrales curvilignes sur l'axe des réelles, que les outils de la théorie de l'intégration ne permettent pas de calculer par une simple analyse réelle Les méthodes d'intégration de contour incluent : l'intégration directe d'une fonction à valeurs complexes le long d'une c
Origine (mathématiques)En mathématiques, lorigine d'un espace euclidien est un point spécial, couramment noté O, utilisé comme point fixe de référence qui servira de repère pour la géométrie de l'espace environnant. Dans les problèmes physiques, le choix de l'origine est souvent arbitraire, ce qui impliquerait que le choix de n'importe quelle origine donnera la même réponse. Ceci autorise à choisir un point d'origine qui simplifie les calculs autant que possible, en utilisant notamment des propriétés avantageuses de symétrie.
Analyticity of holomorphic functionsIn complex analysis, a complex-valued function of a complex variable : is said to be holomorphic at a point if it is differentiable at every point within some open disk centered at , and is said to be analytic at if in some open disk centered at it can be expanded as a convergent power series (this implies that the radius of convergence is positive). One of the most important theorems of complex analysis is that holomorphic functions are analytic and vice versa.
Jean-Robert ArgandJean-Robert Argand, né le à Genève et mort le à Paris, est un mathématicien (amateur) suisse. En 1806, alors qu'il tient une librairie à Paris, il publie une interprétation géométrique des nombres complexes comme points dans le plan, en faisant correspondre au nombre (où i est une des deux racines carrées de –1, l'autre étant -i) l'unique point de coordonnées (a, b) (isomorphisme). Pour cette raison, le plan, vu comme ensemble des nombres complexes, est parfois appelé le plan d'Argand.
Fraction continue généraliséeEn mathématiques, une fraction continue généralisée est une expression de la forme : comportant un nombre fini ou infini d'étages. C'est donc une généralisation des fractions continues simples puisque dans ces dernières, tous les a sont égaux à 1. Une fraction continue généralisée est une généralisation des fractions continues où les numérateurs et dénominateurs partiels peuvent être des complexes quelconques : où an (n > 0) sont les numérateurs partiels et les bn les dénominateurs partiels.
Indice (analyse complexe)vignette|L'indice du point p par rapport au lacet C vaut 2. En mathématiques, l'indice d'un point par rapport à un lacet est intuitivement le nombre de tours (dans le sens contraire des aiguilles d'une montre) réalisé par le lacet autour du point. Cette notion joue un rôle central en analyse complexe, car l'indice intervient dans la théorie de Cauchy globale et, en particulier, dans la formule intégrale de Cauchy. L'indice apparaît également dans le théorème des résidus.
Identité d'EulerEn mathématiques, l'identité d'Euler est une relation entre plusieurs constantes fondamentales et utilisant les trois opérations arithmétiques d'addition, multiplication et exponentiation : où la base e du logarithme naturel représente l'analyse, l'unité imaginaire i représente l'algèbre, la constante d'Archimède π représente la géométrie, . Elle est nommée d'après le mathématicien Leonhard Euler qui la fait apparaître dans son Introductio, publié à Lausanne en 1748.
ExsecantThe exsecant (exsec, exs) and excosecant (excosec, excsc, exc) are trigonometric functions defined in terms of the secant and cosecant functions. They used to be important in fields such as surveying, railway engineering, civil engineering, astronomy, and spherical trigonometry and could help improve accuracy, but are rarely used today except to simplify some calculations.
Théorème de factorisation de WeierstrassEn mathématiques, et plus précisément en analyse, le théorème de factorisation de Weierstrass, nommé en l'honneur de Karl Weierstrass, affirme que les fonctions entières peuvent être représentées par un produit infini, appelé produit de Weierstrass, mettant en jeu leurs zéros. Du développement en série entière suivant pour u ∈ ]–1;1[ : on déduit que la fonction tronquée aux m premiers termes est sensiblement égale à 1 sur [–1 ; 1], sauf dans un voisinage de u = 1 où elle admet un zéro d'ordre 1.