Espace de Hilbertvignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
Endomorphisme normalUn endomorphisme normal est un opérateur d'un espace de Hilbert qui commute avec son adjoint. Soient H un espace de Hilbert (réel ou complexe) et u un endomorphisme de H, d'adjoint u*. On dit que u est normal si Les endomorphismes autoadjoints sont normaux (cas u* = u). Les endomorphismes antiautoadjoints sont normaux (cas u* = –u). Les isométries vectorielles sont des endomorphismes normaux (cas u* = u).
Théorème spectralEn mathématiques, et plus particulièrement en algèbre linéaire et en analyse fonctionnelle, on désigne par théorème spectral plusieurs énoncés affirmant, pour certains endomorphismes, l'existence de décompositions privilégiées, utilisant en particulier l'existence de sous-espaces propres. vignette|Une illustration du théorème spectral dans le cas fini : un ellipsoïde possède (en général) trois axes de symétrie orthogonaux (notés ici x, y et z).
Matrice unitaireEn algèbre linéaire, une matrice carrée U à coefficients complexes est dite unitaire si elle vérifie les égalités : où la matrice adjointe de U est notée U* (ou U en physique, et plus particulièrement en mécanique quantique) et I désigne la matrice identité. L'ensemble des matrices unitaires de taille n forme le groupe unitaire U(n). Les matrices unitaires carrées à coefficients réels sont les matrices orthogonales.
Analyse fonctionnelle (mathématiques)L'analyse fonctionnelle est la branche des mathématiques et plus particulièrement de l'analyse qui étudie les espaces de fonctions. Elle prend ses racines historiques dans l'étude des transformations telles que la transformation de Fourier et dans l'étude des équations différentielles ou intégro-différentielles. Le terme fonctionnelle trouve son origine dans le cadre du calcul des variations, pour désigner des fonctions dont les arguments sont des fonctions.
Théorie des représentationsLa théorie des représentations est une branche des mathématiques qui étudie les structures algébriques abstraites en représentant leurs éléments comme des transformations linéaires d'espaces vectoriels, et qui étudie les modules sur ces structures algébriques abstraites. Essentiellement, une représentation concrétise un objet algébrique abstrait en décrivant ses éléments par des matrices et les opérations sur ces éléments en termes d'addition matricielle et de produit matriciel.
Opérateur adjointEn mathématiques, un opérateur adjoint est un opérateur sur un espace préhilbertien qui est défini, lorsque c'est possible, à partir d'un autre opérateur a et que l'on note a*. On dit aussi que a* est l'adjoint de a. Cet opérateur adjoint permet de faire passer l'opérateur a de la partie gauche du produit scalaire définissant l'espace préhilbertien à la partie droite du produit scalaire. Il s'agit donc d'une généralisation de la notion de matrice adjointe à des espaces de dimension infinie.
IsométrieEn géométrie, une isométrie est une transformation, qui conserve les longueurs et les mesures d’angles, délimités par deux demi‐droites ou bien deux demi‐plans. Autrement dit, une isométrie est une similitude particulière, qui reproduit n’importe quelle figure à l’échelle 1. Ce rapport 1 de longueurs s’appelle le rapport de la similitude. Comme une similitude, une isométrie dite directe conserve l’orientation des figures, tandis qu’une isométrie indirecte inverse leur orientation.
Théorème de PlancherelLe théorème de Plancherel permet d'étendre la transformation de Fourier aux fonctions de carré sommable. Il fut démontré par le mathématicien Michel Plancherel. Soit une fonction de carré sommable sur R et soit . On peut définir la transformée de Fourier de la fonction tronquée à : Alors lorsque A tend vers l'infini, les fonctions convergent en moyenne quadratique (c'est-à-dire pour la norme ||.||2) vers une fonction qu'on note et que l'on appelle transformée de Fourier (ou de Fourier-Plancherel) de .
Opérateur de décalageLes opérateurs de décalage (en anglais : les shifts) sont des opérateurs linéaires qui interviennent en analyse fonctionnelle, une branche des mathématiques. Le plus souvent mentionné est l'opérateur de décalage unilatéral, un opérateur borné non normal particulier, sur un espace de Hilbert muni d'une base hilbertienne infinie dénombrable. Tout espace de Hilbert séparable de dimension infinie (sur K = R ou C) est de dimension hilbertienne dénombrable, c'est-à-dire qu'il est isomorphe à l'espace l(I) des suites de carré sommable à valeurs dans K, indexées par un ensemble I infini dénombrable, par exemple I = N ou Z.