Résumé
Undulatory locomotion is the type of motion characterized by wave-like movement patterns that act to propel an animal forward. Examples of this type of gait include crawling in snakes, or swimming in the lamprey. Although this is typically the type of gait utilized by limbless animals, some creatures with limbs, such as the salamander, forgo use of their legs in certain environments and exhibit undulatory locomotion. In robotics this movement strategy is studied in order to create novel robotic devices capable of traversing a variety of environments. In limbless locomotion, forward locomotion is generated by propagating flexural waves along the length of the animal's body. Forces generated between the animal and surrounding environment lead to a generation of alternating sideways forces that act to move the animal forward. These forces generate thrust and drag. Simulation predicts that thrust and drag are dominated by viscous forces at low Reynolds numbers and inertial forces at higher Reynolds numbers. When the animal swims in a fluid, two main forces are thought to play a role: Skin Friction: Generated due to the resistance of a fluid to shearing and is proportional to speed of the flow. This dominates undulatory swimming in spermatozoa and the nematode Form Force: Generated by the differences in pressure on the surface of the body and it varies with the square of flow speed. At low Reynolds number (Re~100), skin friction accounts for nearly all of the thrust and drag. For those animals which undulate at intermediate Reynolds number (Re~101), such as the Ascidian larvae, both skin friction and form force account for the production of drag and thrust. At high Reynolds number (Re~102), both skin friction and form force act to generate drag, but only form force produces thrust. In animals that move without use of limbs, the most common feature of the locomotion is a rostral to caudal wave that travels down their body. However, this pattern can change based on the particular undulating animal, the environment, and the metric in which the animal is optimizing (i.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (8)
ME-436: Micro/Nano robotics
The objective of this course is to expose students to the fundamentals of robotics at small scale. This includes a focus on physical laws that predominate at the nano and microscale, technologies for
BIOENG-456: Controlling behavior in animals and robots
Students will acquire an integrative view on biological and artificial algorithms for controlling autonomous behaviors. Students will synthesize and apply this knowledge in oral presentations and comp
MICRO-507: Legged robots
The course presents the design, control, and applications of legged robots. It gives a review of different types of legged robots (including two-, four- and multi-legged robots), and an analysis of di
Afficher plus
Concepts associés (3)
Aquatic locomotion
Aquatic locomotion or swimming is biologically propelled motion through a liquid medium. The simplest propulsive systems are composed of cilia and flagella. Swimming has evolved a number of times in a range of organisms including arthropods, fish, molluscs, amphibians, reptiles, birds, and mammals. Swimming evolved a number of times in unrelated lineages. Supposed jellyfish fossils occur in the Ediacaran, but the first free-swimming animals appear in the Early to Middle Cambrian.
Locomotion
En physiologie, la locomotion est la faculté, pour un organisme vivant, de se mouvoir pour se déplacer. Des contraintes sont exercées sur ces organismes suivant le milieu, terrestre, aérien ou aquatique, dans lesquels ils se meuvent. La fonction locomotrice se traduit par un ensemble de mouvements qui entraînent le déplacement de l'être vivant : la progression quadrupède, bipède et apode, dont la reptation, en milieu terrestre, diverses formes de nage et de propulsion en milieu aquatique (système de propulsion par réaction des calmars) et les vols planés ou battus en milieu aérien.
Fish locomotion
Fish locomotion is the various types of animal locomotion used by fish, principally by swimming. This is achieved in different groups of fish by a variety of mechanisms of propulsion, most often by wave-like lateral flexions of the fish's body and tail in the water, and in various specialised fish by motions of the fins.