Analyse numériqueL’analyse numérique est une discipline à l'interface des mathématiques et de l'informatique. Elle s’intéresse tant aux fondements qu’à la mise en pratique des méthodes permettant de résoudre, par des calculs purement numériques, des problèmes d’analyse mathématique. Plus formellement, l’analyse numérique est l’étude des algorithmes permettant de résoudre numériquement par discrétisation les problèmes de mathématiques continues (distinguées des mathématiques discrètes).
Équationvignette|upright=1.2|Robert Recorde est un précurseur pour l'écriture d'une équation. Il invente l'usage du signe = pour désigner une égalité. vignette|upright=1.2|Un système dynamique correspond à un type particulier d'équation, dont les solutions recherchées sont des fonctions. Le comportement limite est parfois complexe. Dans certains cas, il est caractérisé par une curieuse figure géométrique, appelée attracteur étrange. Une équation est, en mathématiques, une relation (en général une égalité) contenant une ou plusieurs variables.
AlgèbreL'algèbre (de l’arabe الجبر, al-jabr) est une branche des mathématiques qui permet d'exprimer les propriétés des opérations et le traitement des équations et aboutit à l'étude des structures algébriques. Selon l’époque et le niveau d’études considérés, elle peut être décrite comme : une arithmétique généralisée, étendant à différents objets ou grandeurs les opérations usuelles sur les nombres ; la théorie des équations et des polynômes ; depuis le début du , l’étude des structures algébriques (on parle d'algèbre générale ou abstraite).
Multiplicationthumb|La multiplication de 4 par 3 donne le même résultat que la multiplication de 3 par 4. La multiplication est l'une des quatre opérations de l'arithmétique élémentaire avec l'addition, la soustraction et la division. Cette opération est souvent notée avec la croix de multiplication « × », mais peut aussi être notée par d'autres symboles (par exemple le point médian « · ») ou par l'absence de symbole. Son résultat s'appelle le produit, les nombres que l'on multiplie sont les facteurs.
Fonction holomorphevignette|Une grille et son image par f d'une fonction holomorphe. En analyse complexe, une fonction holomorphe est une fonction à valeurs complexes, définie et dérivable en tout point d'un sous-ensemble ouvert du plan complexe C. Cette condition est beaucoup plus forte que la dérivabilité réelle. Elle entraîne (via la théorie de Cauchy) que la fonction est analytique : elle est infiniment dérivable et est égale, au voisinage de tout point de l'ouvert, à la somme de sa série de Taylor.
Polynôme formelEn algèbre, le terme de polynôme formel, ou simplement polynôme, est le nom générique donné aux éléments d'une structure construite à partir d'un ensemble de nombres. On considère un ensemble A de nombres, qui peut être celui des entiers ou des réels, et on lui adjoint un élément X, appelé indéterminée. La structure est constituée par les nombres, le polynôme X, les puissances de X multipliées par un nombre, aussi appelés monômes (de la forme aX), ainsi que les sommes de monômes. La structure est généralement notée A[X].
Anneau intègreUn anneau intègre ou anneau d'intégrité est un anneau commutatif unitaire différent de l'anneau nul et qui ne possède aucun diviseur de zéro. Un anneau commutatif unitaire est dit intègre s'il est différent de l'anneau nul (autrement dit : si 1 ≠ 0) et sans diviseur de zéro, c’est-à-dire : En pratique, travailler dans un anneau intègre permet de résoudre des équations produit-nul.
Groupe de GaloisEn mathématiques, et plus spécifiquement en algèbre dans le cadre de la théorie de Galois, le groupe de Galois d'une extension de corps L sur un corps K est le groupe des automorphismes de corps de L laissant K invariant. Le groupe de Galois est souvent noté Gal(L/K). Si l'extension possède de bonnes propriétés, c’est-à-dire si elle est séparable et normale, on parle alors d'extension de Galois et les hypothèses du théorème fondamental de la théorie de Galois sont réunies.
Raisonnement par récurrencevignette|Le raisonnement par récurrence est comme une suite de dominos. Si la propriété est vraie au rang n0 (i. e. le premier domino de numéro 0 tombe) et si sa véracité au rang n implique celle au rang n + 1 (i. e. la chute du domino numéro n fait tomber le domino numéro n + 1) alors la propriété est vraie pour tout entier (i. e. tous les dominos tombent). En mathématiques, le raisonnement par récurrence (ou par induction, ou induction complète) est une forme de raisonnement visant à démontrer une propriété portant sur tous les entiers naturels.
Évariste GaloisÉvariste Galois est un mathématicien français, né le à Bourg-Égalité (aujourd’hui Bourg-la-Reine) et mort le à Paris. Son nom a été donné à une branche des mathématiques dont il a posé les prémices, la théorie de Galois. Il est un précurseur dans la mise en évidence de la notion de groupe et un des premiers à expliciter la correspondance entre symétries et invariants. Sa « théorie de l'ambiguïté » est toujours féconde au .