Espace de de SitterEn mathématiques, l’espace de de Sitter est un espace maximalement symétrique en quatre dimensions de courbure positive en signature . Il généralise en ce sens la 4-sphère au-delà de la géométrie euclidienne. Le nom vient de Willem de Sitter. La dimension 4 est très utilisée car elle correspond à la relativité générale. En fait, il existe en dimension entière . On peut définir l'espace de de Sitter comme une sous-variété d'un espace de Minkowski généralisé à une dimension supplémentaire.
Modèle de KleinEn mathématiques, et plus précisément en géométrie non euclidienne, le 'modèle de Beltrami-Klein, également appelé modèle projectif ou modèle du disque de Klein', est un modèle de géométrie hyperbolique de dimension n dans lequel l'espace hyperbolique est modélisé par la boule unité euclidienne ouverte de rayon 1 de dimension n, les points de l'espace hyperbolique étant les points de la boule unité, et les droites de l'espace hyperbolique étant les cordes de la boule unité.
Invariance de LorentzL' est la propriété d'une quantité physique d'être inchangée par transformation de Lorentz. Il s'agit de quantités physiques qui, lorsqu'elles sont exprimées de manière tensorielle, sont des scalaires ou pseudoscalaires. L' est une des trois hypothèses composant le principe d'équivalence d'Einstein. Dans les cadres de la relativité restreinte et donc de la relativité générale, une quantité est dite invariante de Lorentz, scalaire de Lorentz ou encore invariante relativiste, lorsqu'elle n'est pas modifiée sous l'application d'une transformation de Lorentz.
Curved spaceCurved space often refers to a spatial geometry which is not "flat", where a flat space has zero curvature, as described by Euclidean geometry. Curved spaces can generally be described by Riemannian geometry though some simple cases can be described in other ways. Curved spaces play an essential role in general relativity, where gravity is often visualized as curved space. The Friedmann–Lemaître–Robertson–Walker metric is a curved metric which forms the current foundation for the description of the expansion of space and shape of the universe.
Line elementIn geometry, the line element or length element can be informally thought of as a line segment associated with an infinitesimal displacement vector in a metric space. The length of the line element, which may be thought of as a differential arc length, is a function of the metric tensor and is denoted by . Line elements are used in physics, especially in theories of gravitation (most notably general relativity) where spacetime is modelled as a curved Pseudo-Riemannian manifold with an appropriate metric tensor.
Postulates of special relativityIn physics, Albert Einstein derived the theory of special relativity in 1905 from principle now called the postulates of special relativity. Einstein's formulation is said to only require two postulates, though his derivation implies a few more assumptions. The idea that special relativity depended only on two postulates, both of which seemed to be follow from the theory and experiment of the day, was one of the most compelling arguments for the correctness of the theory (Einstein 1912: "This theory is correct to the extent to which the two principles upon which it is based are correct.
Mécanique relativisteEn physique, la mécanique relativiste se rapporte à la mécanique compatible avec la relativité restreinte (RR) et la relativité générale (RG). Elle fournit une description non-quantique d'un système de particules, ou d'un liquide, dans le cas où les vitesses de déplacement des objets sont comparables à la vitesse de la lumière c. En conséquence, la mécanique classique est étendue correctement aux particules se déplaçant à des vitesses et des énergies élevées, et assure une inclusion cohérente de l'électromagnétisme avec la mécanique des particules.
Local reference frameIn theoretical physics, a local reference frame (local frame) refers to a coordinate system or frame of reference that is only expected to function over a small region or a restricted region of space or spacetime. The term is most often used in the context of the application of local inertial frames to small regions of a gravitational field.
Causal structureIn mathematical physics, the causal structure of a Lorentzian manifold describes the causal relationships between points in the manifold. In modern physics (especially general relativity) spacetime is represented by a Lorentzian manifold. The causal relations between points in the manifold are interpreted as describing which events in spacetime can influence which other events. The causal structure of an arbitrary (possibly curved) Lorentzian manifold is made more complicated by the presence of curvature.
Vacuum solution (general relativity)In general relativity, a vacuum solution is a Lorentzian manifold whose Einstein tensor vanishes identically. According to the Einstein field equation, this means that the stress–energy tensor also vanishes identically, so that no matter or non-gravitational fields are present. These are distinct from the electrovacuum solutions, which take into account the electromagnetic field in addition to the gravitational field.