Projective rangeIn mathematics, a projective range is a set of points in projective geometry considered in a unified fashion. A projective range may be a projective line or a conic. A projective range is the dual of a pencil of lines on a given point. For instance, a correlation interchanges the points of a projective range with the lines of a pencil. A projectivity is said to act from one range to another, though the two ranges may coincide as sets. A projective range expresses projective invariance of the relation of projective harmonic conjugates.
Dualité (géométrie projective)La dualité projective, découverte par Jean-Victor Poncelet, est une généralisation de l'analogie entre le fait que par deux points distincts passe une droite et une seule, et le fait que deux droites distinctes se coupent en un point et un seul (à condition de se placer en géométrie projective, de sorte que deux droites parallèles se rencontrent en un point à l'infini).
Application projectiveEn mathématiques, une application projective est une application entre deux espaces projectifs qui préserve la structure projective, c'est-à-dire qui envoie les droites, plans, espaces... en des droites, plans, espaces. ➪ Fichier:France homographie (1).gif Une application projective bijective s'appelle une homographie. Rappelons que la définition moderne d'un espace projectif est d'être un ensemble dont les points sont les droites vectorielles d'un -espace vectoriel .
ConiqueEn géométrie euclidienne, une conique est une courbe plane algébrique, définie initialement comme l’intersection d'un cône de révolution (supposé prolongé à l’infini de part et d’autre du sommet) avec un plan. Lorsque le plan de coupe ne passe pas par le sommet du cône, la conique est dite non dégénérée et réalise l’une des trois formes de courbe suivantes : ellipse, parabole ou hyperbole (le cercle étant un cas particulier de l'ellipse, parfois appelé quatrième forme). Ces courbes sont caractérisées par un paramètre réel appelé excentricité.
Géométrie projectiveEn mathématiques, la géométrie projective est le domaine de la géométrie qui modélise les notions intuitives de perspective et d'horizon. Elle étudie les propriétés inchangées des figures par projection centrale. Le mathématicien et architecte Girard Desargues fonde la géométrie projective dans son Brouillon project d’une Atteinte aux evenemens des rencontres du cone avec un plan publié en 1639, où il l'utilise pour une théorie unifiée des coniques.
Alignement (géométrie)vignette|Sur cette figure, les points a1,a2,a3 sont alignés, ainsi que les points b1,b2,b3. En revanche, les points a1,a2,b3 ne sont pas alignés. En géométrie, l’alignement est une propriété satisfaite par certains familles de points, lorsque ces derniers appartiennent collectivement à une même droite. Deux points étant toujours alignés en vertu du premier axiome d’Euclide, la notion d’alignement ne présente d’intérêt qu’à partir d’une collection de trois points.
GéométrieLa géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
Plan projectifEn mathématiques, la notion de plan projectif a deux sens distincts, suivant que l'approche est algébrique ou par les axiomes d'incidence entre pointe et droites, l'approche axiomatique donnant une notion qui s'avère un peu plus générale que l'approche algébrique. Un plan projectif en géométrie algébrique est une variété particulière : l'espace projectif de dimension 2. On peut associer un plan projectif à tout corps commutatif (corps des réels, corps des complexes, corps finis) ou non commutatif (quaternions.