Dernier théorème de FermatEn mathématiques, et plus précisément en théorie des nombres, le dernier théorème de Fermat, ou grand théorème de Fermat, ou depuis sa démonstration théorème de Fermat-Wiles, s'énonce comme suit : Énoncé par Pierre de Fermat d'une manière similaire dans une note marginale de son exemplaire d'un livre de Diophante, il a cependant attendu plus de trois siècles une preuve publiée et validée, établie par le mathématicien britannique Andrew Wiles en 1994.
Conjecture abcvignette|Joseph Oesterlé, mathématicien français vignette|David Masser, mathématicien anglais La conjecture abc ou conjecture d'Oesterlé-Masser est une conjecture en théorie des nombres. Elle a été formulée pour la première fois par Joseph Oesterlé (1988) et David Masser (1985). Elle est formulée en termes de trois nombres entiers positifs, a, b et c (d'où son nom), qui n'ont aucun facteur commun et satisfont à . Si d est le produit des facteurs premiers distincts de abc, alors la conjecture affirme à peu près que d ne peut pas être beaucoup plus petit que c.
Théorème de Fermat sur les triangles rectanglesLe théorème de Fermat sur les triangles rectangles est le résultat suivant de non-existence : thumb|300px|Deux triangles rectangles dont les deux côtés du triangle bleu sont égaux au côté et à l'hypoténuse du triangle jaune. Selon le théorème de Fermat sur les triangles rectangles, il n'est pas possible que les quatre longueurs a, b, c, et d, soient des entiers.
Méthode de descente infinieLa méthode de descente infinie est un argument mathématique voisin du raisonnement par récurrence, mais aussi du raisonnement par l'absurde, qui utilise le fait qu'une suite d'entiers naturels strictement décroissante est nécessairement finie. Cette méthode repose sur l'une des propriétés des entiers naturels : « tout ensemble non vide d'entiers naturels possède un plus petit élément. » Soit P(n) une propriété faisant intervenir un entier naturel n. On cherche à démontrer que P(n) est fausse pour tout n.
Triplet pythagoricienvignette|Animation illustrant le plus simple triplet pythagoricien : 32 + 42 = 52. En arithmétique, un triplet pythagoricien ou triplet de Pythagore est un triplet (a, b, c) d'entiers naturels non nuls vérifiant la relation de Pythagore : . Le triplet pythagoricien le plus connu est (3, 4, 5). À tout triplet pythagoricien est associé un triangle de côtés entiers a, b, c, forcément rectangle d’hypoténuse c, ainsi qu'un rectangle de côtés entiers a, b, et de diagonale entière c.
Équation diophantiennevignette|Édition de 1670 des Arithmétiques de Diophante. Une équation diophantienne, en mathématiques, est une équation polynomiale à une ou plusieurs inconnues dont les solutions sont cherchées parmi les nombres entiers, éventuellement rationnels, les coefficients étant eux-mêmes également entiers. La branche des mathématiques qui s'intéresse à la résolution de telles équations s'est appelée longtemps l'analyse indéterminée avant de se fondre dans l'arithmétique ou la théorie des nombres.
ConjectureEn mathématiques, une conjecture est une assertion pour laquelle on ne connaît pas encore de démonstration, mais que l'on croit fortement être vraie (en l'absence de contre-exemple, ou comme généralisation de résultats démontrés). Une conjecture peut être choisie comme hypothèse ou postulat pour étudier d'autres énoncés. Si une conjecture se révèle indécidable relativement au système d'axiomes dans laquelle elle s'insère, elle peut être érigée en nouvel axiome (ou rejetée par la mise en place d'un nouvel axiome).