Radical de JacobsonEn algèbre, le radical de Jacobson d'un anneau commutatif est l'intersection de ses idéaux maximaux. Cette notion est due à Nathan Jacobson qui le premier en a fait l'étude systématique. Un élément x appartient au radical de Jacobson de l'anneau A si et seulement si 1 + ax est inversible pour tout a de A. Notons J le radical de Jacobson de l'anneau commutatif A et exploitons le fait que (d'après le théorème de Krull) 1 + ax est non inversible si et seulement s'il appartient à un idéal maximal.
Algèbre de WeylEn mathématiques, et plus précisément en algèbre générale, lalgèbre de Weyl est un anneau d'opérateurs différentiels dont les coefficients sont des polynômes à une variable. Cette algèbre (et d'autres la généralisant, appelées elles aussi algèbres de Weyl) a été introduite par Hermann Weyl en 1928 comme outil d'étude du principe d'incertitude en mécanique quantique. Les éléments de l'algèbre de Weyl sont de la forme où les fi sont des éléments de F[X], l'anneau des polynômes à une variable sur un corps F, et où ∂X est la dérivée par rapport à X.
SuperalgèbreEn mathématiques et en physique théorique, une superalgèbre est une algèbre Z2 - graduée. En d'autres termes, c'est une algèbre sur un anneau ou un corps commutatif avec une décomposition en parties « paire » et « impaire » et un opérateur de multiplication qui respecte la graduation. Le préfixe super vient de la théorie de la supersymétrie en physique théorique. Les superalgèbres et leurs représentations, les supermodules, fournissent un cadre algébrique pour formuler cette théorie.
Anneau sans diviseur de zéroEn théorie des anneaux, un anneau sans diviseur de zéro () est un anneau unitaire dans lequel un produit est nul seulement si l'un des facteurs est nul, autrement dit dans lequel l'implication suivante est vérifiée : En d'autres termes, c'est un anneau dans lequel il n'y a aucun diviseur de zéro (ni à droite, ni à gauche). Certains auteurs exigent également que la condition 1 ≠ 0 soit remplie ou, ce qui revient au même, que l'anneau ait au moins deux éléments.
Emmy NoetherAmalie Emmy Noether ( – ) est une mathématicienne allemande spécialiste d'algèbre abstraite et de physique théorique. Considérée par Albert Einstein comme , elle a révolutionné les théories des anneaux, des corps et des algèbres. En physique, le théorème de Noether explique le lien fondamental entre la symétrie et les lois de conservation et est considéré comme aussi important que la théorie de la relativité. Emmy Noether naît dans une famille juive d'Erlangen (à l'époque dans le royaume de Bavière).
Radical d'un idéalEn algèbre commutative, le radical (aussi appelé la racine) d'un idéal I dans un anneau commutatif A est l'ensemble des éléments de A dont une puissance appartient à I. Si A est un anneau principal, I est de la forme aA et son radical est l'idéal engendré par le produit des diviseurs irréductibles de a (chaque irréductible — à produit près par un inversible — n'apparaissant qu'une fois dans ce produit). En particulier dans Z, le radical d'un idéal nZ est l'idéal engendré par le radical de l'entier n.
Non-associative algebraA non-associative algebra (or distributive algebra) is an algebra over a field where the binary multiplication operation is not assumed to be associative. That is, an algebraic structure A is a non-associative algebra over a field K if it is a vector space over K and is equipped with a K-bilinear binary multiplication operation A × A → A which may or may not be associative. Examples include Lie algebras, Jordan algebras, the octonions, and three-dimensional Euclidean space equipped with the cross product operation.
Dimension homologiqueEn algèbre, la dimension homologique d'un anneau R diffère en général de sa dimension de Krull et se définit à partir des résolutions projectives ou injectives des R-modules. On définit également la dimension faible à partir des résolutions plates des R-modules. La dimension de Krull (respectivement homologique, faible) de R peut être vue comme une mesure de l'éloignement de cet anneau par rapport à la classe des anneaux artiniens (resp. semi-simples, ), cette dimension étant nulle si, et seulement si R est artinien (resp.
Mathématiques puresvignette|Formules mathématiques Les mathématiques pures (ou mathématiques fondamentales) regroupent les activités de recherche en mathématiques motivée par des raisons autres que celles de l'application pratique. Les mathématiques pures reposent sur un ensemble d'axiomes et sur un système logique, détachés de l'expérience et de la réalité. Il n'est cependant pas rare que des théories développées sans objectif pratique soient utilisées plus tard pour certaines applications, comme la géométrie riemannienne pour la relativité générale.