Conditioning (probability)Beliefs depend on the available information. This idea is formalized in probability theory by conditioning. Conditional probabilities, conditional expectations, and conditional probability distributions are treated on three levels: discrete probabilities, probability density functions, and measure theory. Conditioning leads to a non-random result if the condition is completely specified; otherwise, if the condition is left random, the result of conditioning is also random.
Conditional probability distributionIn probability theory and statistics, given two jointly distributed random variables and , the conditional probability distribution of given is the probability distribution of when is known to be a particular value; in some cases the conditional probabilities may be expressed as functions containing the unspecified value of as a parameter. When both and are categorical variables, a conditional probability table is typically used to represent the conditional probability.
Bayesian epistemologyBayesian epistemology is a formal approach to various topics in epistemology that has its roots in Thomas Bayes' work in the field of probability theory. One advantage of its formal method in contrast to traditional epistemology is that its concepts and theorems can be defined with a high degree of precision. It is based on the idea that beliefs can be interpreted as subjective probabilities. As such, they are subject to the laws of probability theory, which act as the norms of rationality.
Loi de probabilité à plusieurs variablesvignette|Représentation d'une loi normale multivariée. Les courbes rouge et bleue représentent les lois marginales. Les points noirs sont des réalisations de cette distribution à plusieurs variables. Dans certains problèmes interviennent simultanément plusieurs variables aléatoires. Mis à part les cas particuliers de variables indépendantes (notion définie ci-dessous) et de variables liées fonctionnellement, cela introduit la notion de loi de probabilité à plusieurs variables autrement appelée loi jointe.
Formule des probabilités totalesvignette|Dans cet arbre de probabilité, la probabilité de l'événement B s'obtient en sommant les probabilités des chemins conduisant à la réalisation de B. En théorie des probabilités, la formule des probabilités totales est un théorème qui permet de calculer la probabilité d'un événement en le décomposant suivant un système exhaustif d'événements. Ce corollaire permet de ramener le calcul de au calcul des parfois plus facile, car l'évènement Bi, étant plus petit que l'évènement B, fournit une information plus précise, et facilite ainsi le pronostic (pronostic = calcul de la probabilité conditionnelle).
Espérance conditionnelleEn théorie des probabilités, l'espérance conditionnelle d'une variable aléatoire réelle donne la valeur moyenne de cette variable quand un certain événement est réalisé. Selon les cas, c'est un nombre ou alors une nouvelle variable aléatoire. On parle alors d'espérance d'une variable aléatoire conditionnée par un événement B est, intuitivement, la moyenne que l'on obtient si on renouvelle un grand nombre de fois l'expérience liée à la variable aléatoire et que l'on ne retient que les cas où l'événement B est réalisé.
Bruno de FinettiBruno de Finetti (13 juin 1906 - 20 juillet 1985) est un statisticien et actuaire italien, connu pour sa conception « opérationnelle subjective » de la probabilité. L'exposition classique de sa théorie distinctive est La prévision : ses lois logiques, ses sources subjectives de 1937 qui a discuté des probabilités fondées sur la cohérence des cotes des paris et les conséquences de l' échange. De Finetti naît à Innsbruck, Autriche. Il étudie les mathématiques à l'École polytechnique de Milan.
Théorème de Bayesvignette|Théorème de Bayes sur néon bleu, dans les bureaux d’Autonomy à Cambridge. Le théorème de Bayes ( ) est l'un des principaux théorèmes de la théorie des probabilités. Il est aussi utilisé en statistiques du fait de son application, qui permet de déterminer la probabilité qu'un événement arrive à partir d'un autre évènement qui s'est réalisé, notamment quand ces deux évènements sont interdépendants.
Probabilité a posterioriDans le théorème de Bayes, la probabilité a posteriori désigne la probabilité recalculée ou remesurée qu'un évènement ait lieu en prenant en considération une nouvelle information. Autrement dit, la probabilité a posteriori est la probabilité qu'un évènement A ait lieu étant donné que l'évènement B a eu lieu. Elle s'oppose à la probabilité a priori dans l'inférence bayésienne. La loi a priori qu'un évènement ait lieu avec vraisemblance est .
Interprétations de la probabilitéLe mot probabilité a été utilisé dans une variété de domaines depuis qu'il a été appliqué à l'étude mathématique des jeux de hasard. Est-ce que la probabilité mesure la tendance réelle physique de quelque chose de se produire, ou est-ce qu'elle est une mesure du degré auquel on croit qu'elle se produira, ou faut-il compter sur ces deux éléments ? Pour répondre à ces questions, les mathématiciens interprètent les valeurs de probabilité de la théorie des probabilités.