Pairwise independenceIn probability theory, a pairwise independent collection of random variables is a set of random variables any two of which are independent. Any collection of mutually independent random variables is pairwise independent, but some pairwise independent collections are not mutually independent. Pairwise independent random variables with finite variance are uncorrelated. A pair of random variables X and Y are independent if and only if the random vector (X, Y) with joint cumulative distribution function (CDF) satisfies or equivalently, their joint density satisfies That is, the joint distribution is equal to the product of the marginal distributions.
Indépendance (probabilités)vignette|Paire de dés L'indépendance est une notion probabiliste qualifiant de manière intuitive des événements aléatoires n'ayant aucune influence l'un sur l'autre. Il s'agit d'une notion très importante en statistique et en théorie des probabilités. Par exemple, la valeur d'un premier lancer de dés n'a aucune influence sur la valeur du second lancer. De même, pour un lancer, le fait dobtenir une valeur inférieure ou égale à quatre n'influe en rien sur la probabilité que le résultat soit pair ou impair : les deux événements sont dits indépendants.
Espace probabiliséUn espace de probabilité(s) ou espace probabilisé est construit à partir d'un espace probabilisable en le complétant par une mesure de probabilité : il permet la modélisation quantitative de l'expérience aléatoire étudiée en associant une probabilité numérique à tout événement lié à l'expérience. Formellement, c'est un triplet formé d'un ensemble , d'une tribu sur et d'une mesure sur cette tribu tel que . L'ensemble est appelé l'univers et les éléments de sont appelés les événements.
Axiomes des probabilitésEn théorie des probabilités, les axiomes de probabilités, également appelés axiomes de Kolmogorov du nom d'Andreï Nikolaievitch Kolmogorov qui les a développés, désignent les propriétés que doit vérifier une application afin de formaliser l'idée de probabilité. Ces propriétés peuvent être résumées ainsi : si est une mesure sur un espace mesurable , alors doit être un espace de probabilité. Le théorème de Cox fournit une autre approche pour formaliser les probabilités, privilégiée par certains bayésiens.
Événement (probabilités)vignette|Jeu de dés : une expérience aléatoire. En théorie des probabilités, un événement lié à une expérience aléatoire est un sous-ensemble des résultats possibles pour cette expérience (c'est-à-dire un certain sous-ensemble de l'univers lié à l'expérience). Un événement étant souvent défini par une proposition, nous devons pouvoir dire, connaissant le résultat de l'expérience aléatoire, si l'événement a été réalisé ou non au cours de cette expérience. Par exemple, considérons l'expérience aléatoire consistant à lancer un dé à 6 faces.
Bayesian probabilityBayesian probability (ˈbeɪziən or ˈbeɪʒən ) is an interpretation of the concept of probability, in which, instead of frequency or propensity of some phenomenon, probability is interpreted as reasonable expectation representing a state of knowledge or as quantification of a personal belief. The Bayesian interpretation of probability can be seen as an extension of propositional logic that enables reasoning with hypotheses; that is, with propositions whose truth or falsity is unknown.
Thomas BayesThomas Bayes ( , né env. en 1702 à Londres - mort le à Tunbridge Wells, dans le Kent) est un mathématicien britannique et pasteur de l'Église presbytérienne, connu pour avoir formulé le théorème de Bayes. Thomas Bayes est issu d'une famille de protestants, qui étaient couteliers. Il reçoit une éducation privée et en 1719, il part pour l'université d’Édimbourg, afin d'étudier la théologie. À la fin des années 1720, il est nommé pasteur à Tunbridge Wells, près de Londres.