Mathématiques computationnellesvignette| Une interprétation en noir et blanc de la tablette YBC 7289 de la Yale Babylonian Collection (vers 1800–1600 avant notre ère), montrant une approximation babylonienne de la racine carrée de 2 (1 24 51 10 w : sexagésimal) dans le contexte du théorème de Pythagore pour un triangle isocèle. La tablette donne également un exemple où un côté du carré est 30 et la diagonale résultante est 42 25 35 soit 42,4263888.
Computational economicsComputational Economics is an interdisciplinary research discipline that involves computer science, economics, and management science. This subject encompasses computational modeling of economic systems. Some of these areas are unique, while others established areas of economics by allowing robust data analytics and solutions of problems that would be arduous to research without computers and associated numerical methods.
Society for Industrial and Applied MathematicsLa Society for Industrial and Applied Mathematics (SIAM), est une association en mathématiques. Fondée en , elle comptait alors une centaine de membres. En , elle compte plus de , surtout en Amérique du Nord, en Extrême-Orient, au Royaume-Uni et en Irlande. Des universités en sont aussi membres.
Économie mathématiquevignette|Les acteurs économiques (STN et actionnaires) sont classés par importance décroissante, donnée par . Un point de données situé en () correspond à une fraction des principaux acteurs économiques détenant cumulativement la fraction du contrôle, de la valeur ou des revenus d'exploitation du réseau. Les différentes courbes se réfèrent au contrôle du réseau calculé avec trois modèles (LM, TM, RM), voir l'annexe S1, section 3.1, et aux revenus d'exploitation. La ligne horizontale indique une valeur égale à .
Équation différentielle ordinaireEn mathématiques, une équation différentielle ordinaire (parfois simplement appelée équation différentielle et abrégée en EDO) est une équation différentielle dont la ou les fonctions inconnues ne dépendent que d'une seule variable; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. Le terme ordinaire est utilisé par opposition au terme équation différentielle partielle (plus communément équation aux dérivées partielles, ou EDP) où la ou les fonctions inconnues peuvent dépendre de plusieurs variables.
DiscrétisationEn mathématiques appliquées, la discrétisation est la transposition d'un état (fonction, modèle, variable, équation) en un équivalent . Ce procédé constitue en général une étape préliminaire à la résolution numérique d'un problème ou sa programmation sur machine. Un cas particulier est la dichotomisation où le nombre de classes discrètes est 2, où on peut approcher une variable continue en une variable binaire. La discrétisation est aussi reliée aux mathématiques discrètes, et compte parmi les composantes importantes de la programmation granulaire.
Académie américaine des arts et des sciencesLAcadémie américaine des arts et des sciences (en anglais American Academy of Arts and Sciences) est une organisation vouée à l’enseignement et au progrès des connaissances. Elle joue le rôle de société honorifique aux États-Unis. James Bowdoin (1726-1790), John Adams (1735-1826) et John Hancock (1737-1793) fondent l’Académie à Boston durant la guerre d'indépendance des États-Unis.
Discrete optimizationDiscrete optimization is a branch of optimization in applied mathematics and computer science. As opposed to continuous optimization, some or all of the variables used in a discrete mathematical program are restricted to be discrete variables—that is, to assume only a discrete set of values, such as the integers. Three notable branches of discrete optimization are: combinatorial optimization, which refers to problems on graphs, matroids and other discrete structures integer programming constraint programming These branches are all closely intertwined however since many combinatorial optimization problems can be modeled as integer programs (e.
Computational engineeringComputational Engineering is an emerging discipline that deals with the development and application of computational models for engineering, known as Computational Engineering Models or CEM. At this time, various different approaches are summarized under the term Computational Engineering, including using computational geometry and virtual design for engineering tasks, often coupled with a simulation-driven approach In Computational Engineering, algorithms solve mathematical and logical models that describe engineering challenges, sometimes coupled with some aspect of AI, specifically Reinforcement Learning.
Physique appliquéeLa physique appliquée est la branche de la physique qui s'intéresse à l'étude de ses applications industrielles, notamment du point de vue de l'équipement dans les secteurs primaires et secondaires (moteur, machine d'usinage, transformateur, poste de soudage...). Traduction du terme anglais Applied Physics, on y retrouve par exemple : En France La physique appliquée a été enseignée en lycée technique jusqu'en 2011. Elle permettait de décrire les phénomènes physiques mis en œuvre par les équipements utilisés en enseignement technique.