Groupe de HeisenbergEn mathématiques, le groupe de Heisenberg d'un anneau unifère A (non nécessairement commutatif) est le groupe multiplicatif des matrices triangulaires supérieures de taille 3 à coefficients dans A et dont les éléments diagonaux sont égaux au neutre multiplicatif de l'anneau : Originellement, l'anneau A choisi par Werner Heisenberg était le corps R des réels. Le « groupe de Heisenberg continu », , lui a permis d'expliquer, en mécanique quantique, l'équivalence entre la représentation de Heisenberg et celle de Schrödinger.
Produit en couronneEn mathématiques, le produit en couronne est une notion de théorie des groupes. C'est un certain groupe construit à partir de deux groupes, le second opérant sur un ensemble. Il existe en fait plusieurs notions de produit en couronne, voisines mais distinctes. En théorie des groupes, le produit en couronne, outre qu'il fournit divers contre-exemples, permet notamment de décrire les sous-groupes de Sylow des groupes symétriques finis.
Théorème de Cauchy (groupes)NOTOC En mathématiques, le théorème de Cauchy, nommé en l'honneur du mathématicien Augustin Louis Cauchy, est le suivant : La démonstration de McKay est détaillée sur Wikiversité. On fait agir le groupe par permutation circulaire sur l'ensemble où e désigne l'élément neutre du groupe G. L'équation aux classes affirme que # E est la somme des cardinaux des orbites pour l'action de . Or car étant donné quelconque est totalement déterminé (et vaut Ainsi #E est un multiple de p.
Cœur d'un sous-groupeEn mathématiques, et plus précisément en théorie des groupes, l'intersection des conjugués, dans un groupe , d'un sous-groupe de est appelée le cœur de (dans ) et est notée cœurG(H) ou encore . Le cœur de dans est le plus grand sous-groupe normal de contenu dans . Si on désigne par / l'ensemble des classes à gauche de modulo (cet ensemble n'est pas forcément muni d'une structure de groupe, n'étant pas supposé normal dans ), on sait que opère à gauche sur / par : Le cœur de dans est le noyau de cette opération.
Classification des groupes simples finisEn mathématiques, et plus précisément en théorie des groupes, la classification des groupes simples finis, aussi appelée le théorème énorme, est un ensemble de travaux, principalement publiés entre environ 1955 et 1983, qui a pour but de classer tous les groupes finis simples. En tout, cet ensemble comprend des dizaines de milliers de pages publiées dans 500 articles par plus de 100 auteurs.
Théorème de Burnside (groupe résoluble)En mathématiques, le théorème de Burnside appartient à la théorie des groupes finis. Son énoncé est : Il est nommé en l'honneur de William Burnside, qui l'a démontré en 1904, à l'aide de la théorie des représentations d'un groupe fini. À une époque où que tout groupe fini ayant pour ordre une puissance de nombre premier est résoluble, Georg Frobenius démontre en 1895 que tout groupe d'ordre pq, où p et q sont des nombres premiers, est résoluble. Ce résultat est étendu trois ans plus tard par Camille Jordan aux groupes d'ordre pq.
Suite de compositionLa notion de suite de composition est une notion de théorie des groupes. Elle permet, dans un sens qui sera précisé, de considérer un groupe comme « composé » de certains de ses sous-groupes. Soient G un groupe et e son élément neutre. On appelle suite de composition de G toute suite finie (G_0, G_1, ..., G_r) de sous-groupes de G telle queet que, pour tout i ∈ {0, 1, ..., r – 1}, G_i+1 soit sous-groupe normal de G_i.Les quotients G_i/G_i+1 sont appelés les quotients de la suite. Soient Σ_1 = (G_0, G_1, ...
CentralisateurEn mathématiques, et plus précisément en théorie des groupes, le centralisateur d'une partie X d'un groupe G est le sous-groupe de G formé par les éléments de G qui commutent avec tout élément de X. Soient G un groupe et x un élément de G. Le centralisateur de x dans G, noté CG(x) (ou C(x) si le contexte n'est pas ambigu) est, par définition, l'ensemble des éléments de G qui commutent avec x. Cet ensemble est un sous-groupe de G.
Torsion groupIn group theory, a branch of mathematics, a torsion group or a periodic group is a group in which every element has finite order. The exponent of such a group, if it exists, is the least common multiple of the orders of the elements. For example, it follows from Lagrange's theorem that every finite group is periodic and it has an exponent dividing its order. Examples of infinite periodic groups include the additive group of the ring of polynomials over a finite field, and the quotient group of the rationals by the integers, as well as their direct summands, the Prüfer groups.