Concepts associés (7)
Loi de réciprocité d'Artin
En mathématiques, la 'loi de réciprocité d'Artin' est un résultat important de théorie des nombres établi par Emil Artin dans une série d'articles publiés entre 1924 et 1930. Au cœur de la théorie du corps de classe, la réciprocité d'Artin tire son nom d'une parenté avec la réciprocité quadratique introduite par Gauss, et d'autres lois d'expression similaire, la réciprocité d'Eisenstein, de Kummer, ou de Hilbert. Une des motivations initiales derrière ce résultat était le neuvième problème de Hilbert, auquel la réciprocité d'Artin apporte une réponse partielle.
Symbole de Hilbert
En mathématiques, le symbole de Hilbert est une application algébrique permettant de tester les solutions de certaines équations algébriques, particulièrement dans les corps de nombres p-adiques, mais aussi un objet permettant de formuler certaines , et intéressant pour la théorie des corps de classes ; enfin, c'est un cas particulier de la notion de symbole sur un corps, qui est un concept important en K-théorie algébrique. Le symbole de Hilbert (a, b) de deux éléments non nuls a et b d'un corps K est 1 ou –1, suivant que l'équation ax + by = 1 admet ou non une solution (x, y) dans K.
Symbole de Legendre
En théorie des nombres, le symbole de Legendre est une fonction de deux variables entières à valeurs dans {–1, 0, 1}, qui caractérise les résidus quadratiques. Il a été introduit par Adrien-Marie Legendre, au cours de ses efforts pour démontrer la loi de réciprocité quadratique. Il ne dépend donc que de la classe de a modulo p. Le cas particulier p = 2 est inclus dans cette définition mais sans intérêt : vaut 0 si a est pair et 1 sinon.
Anneau adélique
En mathématiques et dans la théorie des nombres, l'anneau adélique, ou anneau des adèles, est un anneau topologique contenant le corps des nombres rationnels (ou, plus généralement, un corps de nombres algébriques), construit à l'aide de toutes les complétions du corps. Le mot « adèle » est une abréviation pour « additive idele » (« idèle additive »). . Les adèles étaient appelées vecteurs de valuation ou répartitions avant 1950.
Loi de réciprocité quadratique
En mathématiques, en particulier en théorie des nombres, la loi de réciprocité quadratique, établit des liens entre les nombres premiers ; plus précisément, elle décrit la possibilité d'exprimer un nombre premier comme un carré modulo un autre nombre premier. Conjecturée par Euler et reformulée par Legendre, elle a été correctement démontrée pour la première fois par Gauss en 1801.
Théorie des corps de classes
vignette|Les racines cinquièmes de l'unité dans le plan complexe. Ajouter ces racines aux nombres rationnels génère une extension abélienne. En mathématiques, la théorie des corps de classes est une branche majeure de la théorie algébrique des nombres qui a pour objet la classification des extensions abéliennes, c'est-à-dire galoisiennes et de groupe de Galois commutatif, d'un corps commutatif donné. Plus précisément, il s'agit de décrire et de construire ces extensions en termes de propriétés arithmétiques du corps de base lui-même.
Théorie algébrique des nombres
En mathématiques, la théorie algébrique des nombres est la branche de la théorie des nombres utilisant des outils issus de l'algèbre. Son origine est l'étude des nombres entiers et particulièrement les équations diophantiennes. Pour en résoudre certaines, il est utile de considérer d'autres entiers, dits algébriques. Un exemple est donné par le théorème des deux carrés de Fermat utilisant les entiers de Gauss. Ces ensembles sont équipés de deux lois — une addition et une multiplication — qui vérifient les mêmes propriétés élémentaires que les entiers relatifs : on parle d'anneaux.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.