Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
En mathématiques, plus précisément en topologie, la topologie produit est une topologie définie sur un produit d'espaces topologiques. C'est de manière générale la topologie initiale associée aux projections de l'espace produit vers chacun de ses facteurs : autrement dit, c'est la topologie la moins fine rendant continues les projections. Dans le cas d'un produit fini, la topologie produit permet notamment de définir une topologie naturelle sur Rn à partir de celle de R. Si sont des espaces topologiques, est un ouvert de si et seulement si il existe ouverts respectifs de tels que et . Autrement dit, un ouvert du produit est une réunion de produits d'ouverts des facteurs. On peut vérifier que cette définition rend les projections continues (on verra dans la partie suivante que ceci caractérise en fait la topologie produit), et que le projeté d'un ouvert est un ouvert. Par contre, le projeté d'un fermé n'est pas fermé. Par exemple, l'ensemble est fermé de R (c'est l' d'un fermé : le singleton par une fonction continue : le produit de par ), mais sa projection sur l'axe des x n'est pas fermée (c'est en effet R*). La description ci-dessous montre que la topologie produit est un cas particulier de topologie initiale. Soit une famille quelconque d'espaces topologiques, le produit des est noté . La topologie produit est la topologie la moins fine rendant continues les projections : une prébase est donc l'ensemble des , ouvert de , , autrement dit, c'est : Une base de la topologie produit est alors formée par l'ensemble des intersections finies d'éléments de la prébase, c'est-à-dire : On déduit alors aisément le cas fini en remarquant que les espaces sont des ouverts, et que réciproquement tout produit d'ouverts de est nécessairement fini. Par contre dans le cas du produit infini, la base est constituée de produits d'un nombre fini d'ouverts avec les espaces restants, et un produit infini d'ouverts non vides n'est jamais ouvert si un nombre infini de ces ouverts sont différents des . Soient X le produit des X pour i ∈ I et Y un espace topologique.
Anne-Marie Kermarrec, Rafael Pereira Pires, Akash Balasaheb Dhasade, Rishi Sharma, Milos Vujasinovic