Idéographiethumb|Page de titre de l'ouvrage de Frege de 1879, Begriffschrift (Idéographie). L'idéographie (Begriffsschrift) est un langage entièrement formalisé inventé par le logicien Gottlob Frege et qui a pour but de représenter de manière parfaite la logique mathématique. Le projet d'un langage entièrement formalisé n'est pas nouveau : Leibniz en avait développé un, qui n'aboutit pas, sous le nom de caractéristique universelle.
Composition de fonctionsLa composition de fonctions (ou composition d’applications) est, en mathématiques, un procédé qui consiste, à partir de deux fonctions, à en construire une nouvelle. Pour cela, on utilise les images de la première fonction comme arguments pour la seconde (à condition que cela ait un sens). On parle alors de fonction composée (ou d'application composée). Soient X, Y et Z trois ensembles quelconques. Soient deux fonctions et . On définit la composée de f par g, notée , par On applique ici f à l'argument x, puis on applique g au résultat.
Ordre des opérationsvignette|Ordre des opérations En mathématiques, la priorité des opérations ou ordre des opérations sont un ensemble de règles d'usage faisant consensus au sein de la communauté des mathématiciens. Elle précise l'ordre dans lequel les calculs doivent être effectués dans une expression complexe. Les règles de priorité sont : Les calculs entre parenthèses ou crochets sont prioritaires sur les calculs situés en dehors.
Notation polonaise inversethumb|Exemple d'utilisation de la pile en RPN La notation polonaise inverse (NPI) (en anglais RPN pour Reverse Polish Notation), également connue sous le nom de notation post-fixée, permet d'écrire de façon non ambiguë les formules arithmétiques sans utiliser de parenthèses. Dérivée de la notation polonaise présentée en 1924 par le mathématicien polonais Jan Łukasiewicz, elle s’en différencie par l’ordre des termes, les opérandes y étant présentés avant les opérateurs et non l’inverse.
Barre de Sheffervignette|Diagramme de Venn de . En calcul de propositions, la barre de Sheffer, nommée d'après Henry M. Sheffer, notée « | » (voir barre verticale, à ne pas confondre avec « || » qui est souvent utilisé pour représenter la disjonction), « Dpq », ou « ↑ » (une flèche pointant vers le haut), désigne une opération logique qui est équivalente à la négation de la conjonction logique, exprimée « pas les deux à la fois » dans le langage ordinaire. Il est aussi appelé nand (« non et »), car il dit en effet qu'au moins l'un de ses opérandes est faux.
If and only ifIn logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.
Quantification existentielleEn mathématiques et en logique, plus précisément en calcul des prédicats, l'existence d'un objet x satisfaisant une certaine propriété, ou prédicat, P se note ∃x P(x), où le symbole mathématique ∃, lu « il existe », est le quantificateur existentiel, et P(x) le fait pour l'objet x d'avoir la propriété P. L'objet x a la propriété P(x) s'exprime par une formule du calcul des prédicats.
False (logic)In logic, false or untrue is the state of possessing negative truth value and is a nullary logical connective. In a truth-functional system of propositional logic, it is one of two postulated truth values, along with its negation, truth. Usual notations of the false are 0 (especially in Boolean logic and computer science), O (in prefix notation, Opq), and the up tack symbol . Another approach is used for several formal theories (e.g., intuitionistic propositional calculus), where a propositional constant (i.
Algorithme Shunting-yardLalgorithme Shunting-yard (littéralement, "algorithme de la gare de triage") est une méthode d'analyse syntaxique d'une expression mathématique exprimée en notation algébrique parenthésée. Il peut être utilisé pour traduire l'expression en notation polonaise inverse, ou en arbre syntaxique abstrait. Il a été inventé par Edsger Dijkstra. Comme l'évaluation de NPI, la conversion de la notation d'infixe en NPI est fondée sur l’utilisation d’une pile.
Laws of FormLaws of Form (hereinafter LoF) is a book by G. Spencer-Brown, published in 1969, that straddles the boundary between mathematics and philosophy. LoF describes three distinct logical systems: The "primary arithmetic" (described in Chapter 4 of LoF), whose models include Boolean arithmetic; The "primary algebra" (Chapter 6 of LoF), whose models include the two-element Boolean algebra (hereinafter abbreviated 2), Boolean logic, and the classical propositional calculus; "Equations of the second degree" (Chapter 11), whose interpretations include finite automata and Alonzo Church's Restricted Recursive Arithmetic (RRA).