Introduit le degré de liaison quadratique dans la théorie motivienne des nœuds, couvrant les bases de la théorie des nœuds, la géométrie algébrique et la théorie des intersections.
Revisite le théorème spectral pour les matrices symétriques, mettant l'accent sur les propriétés orthogonales diagonales et son équivalence avec les formes symétriques bilinéaires.