Fonction Lvignette|Représentation de la fonction ζ de Riemann, exemple le plus classique de fonction L En mathématiques, la théorie des fonctions L est devenue une branche très substantielle, et encore largement conjecturelle, de la théorie analytique des nombres contemporaine. On y construit de larges généralisations de la fonction zêta de Riemann et même des séries L pour un caractère de Dirichlet et on y énonce de manière systématique leurs propriétés générales, qui dans la plupart des cas sont encore hors de portée d'une démonstration.
Série harmoniqueEn mathématiques, la série harmonique est une série de nombres réels. C'est la série des inverses des entiers naturels non nuls. Elle tire son nom par analogie avec la moyenne harmonique, de la même façon que les séries arithmétiques et géométriques peuvent être mises en parallèle avec les moyennes arithmétiques et géométriques. Elle fait partie de la famille plus large des séries de Riemann, qui sont utilisées comme séries de référence : la nature d'une série est souvent déterminée en la comparant à une série de Riemann et en utilisant les théorèmes de comparaison.
Terence TaoTerence Tao (sinogrammes traditionnels : 陶哲軒, sinogrammes simplifiés : 陶哲轩), né le à Adélaïde (Australie), est un mathématicien australien. Titulaire de nombreuses distinctions mathématiques parmi lesquelles la médaille Fields, il travaille principalement dans les domaines de l'analyse harmonique, des équations aux dérivées partielles, de la combinatoire, de la théorie analytique des nombres et de la théorie des représentations. De 1992 à 1996, il est doctorant à l'université de Princeton sous la direction d'Elias Stein.
Produit eulérienEn mathématiques, et plus précisément en théorie analytique des nombres, un produit eulérien est un développement en produit infini, indexé par les nombres premiers. Il permet de mesurer la répartition des nombres premiers et est intimement lié à la fonction zêta de Riemann. Il est nommé en l'honneur du mathématicien suisse Leonhard Euler. Euler cherche à évaluer la répartition des nombres premiers p = 2, p = 3, ....
Sur le nombre de nombres premiers inférieurs à une taille donnéeSur le nombre de nombres premiers inférieurs à une taille donnée (titre original, en allemand : Über die Anzahl der Primzahlen unter einer gegebenen Grösse) est un article de 8 pages écrit par Bernhard Riemann et publié dans l'édition de novembre 1859 des Rapports mensuels de l'Académie de Berlin. Bien que ce soit le seul article qu'il ait publié sur la théorie des nombres, il contient des idées qui ont influencé des milliers de chercheurs depuis la fin du jusqu'à nos jours, en particulier la formulation de ce qu'on appelle désormais l'hypothèse de Riemann.
Théorie des criblesEn mathématiques, la théorie des cribles est une partie de la théorie des nombres ayant pour but d'estimer, à défaut de dénombrer, les cardinaux de sous-ensembles (éventuellement infinis) de N en approchant la fonction indicatrice du sous-ensemble considéré. Cette technique a pour origine le crible d'Ératosthène, et dans ce cas, le but était d'étudier l'ensemble des nombres premiers. Un des nombreux résultats que l'on doit aux cribles a été découvert par Viggo Brun en 1919.
Théorie additive des nombresLa théorie additive des nombres est une branche de la théorie des nombres où sont étudiées des parties de l'ensemble des entiers, et leur comportement vis-à-vis de l'addition. Plus abstraitement, ce domaine inclut l'étude des groupes abéliens et des demi-groupes commutatifs, dont la loi interne est alors notée additivement. Il a des liens étroits avec la combinatoire arithmétique et la géométrie des nombres. Le principal objet d'étude est la somme d'ensembles : somme de deux parties A et B d'un groupe abélien et somme itérée d'une partie A avec elle-même.
Chen JingrunChen Jingrun, – , est un mathématicien chinois qui a contribué de manière significative à l'enrichissement de la théorie des nombres. Chen est considéré comme un pionnier et une figure majeure des mathématiques au , et l'un des mathématiciens chinois les plus importants de l'histoire. Chen Jingrun est le troisième fils d'une famille nombreuse de Fuzhou, Fujian, Chine. Son père était un employé de la poste. Chen Jingrun sort diplômé en mathématiques de l'université de Xiamen en 1953.
Jacques HadamardJacques Salomon Hadamard, né le à Versailles et mort le à Paris, est un mathématicien français, connu pour ses travaux en théorie des nombres, en analyse complexe, en analyse fonctionnelle, en géométrie différentielle et en théorie des équations aux dérivées partielles. Jacques Salomon Hadamard est né, en 1865, dans une famille juive française. Son père, Amédée Hadamard (1828-1888), originaire de la Moselle, était professeur d'histoire, de grammaire et de littérature classique au lycée impérial de Versailles, puis au lycée Charlemagne à Paris.
Large sieveThe large sieve is a method (or family of methods and related ideas) in analytic number theory. It is a type of sieve where up to half of all residue classes of numbers are removed, as opposed to small sieves such as the Selberg sieve wherein only a few residue classes are removed. The method has been further heightened by the larger sieve which removes arbitrarily many residue classes. Its name comes from its original application: given a set such that the elements of S are forbidden to lie in a set Ap ⊂ Z/p Z modulo every prime p, how large can S be? Here Ap is thought of as being large, i.