Postulat de BertrandEn mathématiques, le postulat de Bertrand affirme qu'entre un entier et son double, il existe toujours au moins un nombre premier. Plus précisément, l'énoncé usuel est le suivant : Le postulat de Bertrand est aussi connu sous le nom de théorème de Tchebychev, depuis que Pafnouti Tchebychev l’a démontré en 1850. L'énoncé usuel du postulat de Bertrand : 1. Pour tout entier , il existe un nombre premier tel que . est équivalent aux quatre suivants : 2. Pour tout entier , il existe un nombre premier tel que . 3.
Atle SelbergAtle Selberg (né le à Langesund (Norvège) et mort le à Princeton (New Jersey)) est un mathématicien norvégien connu pour son travail en théorie analytique des nombres et dans la théorie des formes automorphes, en particulier en liaison avec la théorie spectrale. Dès sa jeunesse, Selberg a été influencé par l'œuvre de Ramanujan. Il a fait ses études à l'université d'Oslo et soutenu son doctorat en 1943. Il a été élève de Viggo Brun. Durant la Seconde Guerre mondiale, il a travaillé seul à cause de l'occupation de la Norvège par l'Allemagne nazie.
Fonction zêta de Riemannvignette|upright=2|La fonction zêta de Riemann ζ(s) dans le plan complexe. La couleur d'un point s code la valeur de ζ(s) : des couleurs vives indiquent des valeurs proches de 0 et la nuance indique l'argument de la valeur. Le point blanc pour s = 1 est le pôle ; les points noirs sur l'axe réel négatif (demi-droite horizontale) et sur la droite critique Re(s) = 1/2 (droite verticale) sont les zéros. vignette|upright=2|Carte des couleurs utilisées dans la figure du dessus.
Principe des tiroirsEn mathématiques, le principe des tiroirs de Dirichlet, affirme que, sans perte de généralité, si chaussettes sont rangées dans tiroirs, alors au moins un tiroir contient plus d’une chaussette. Mathématiquement, le principe peut s'énoncer ainsi : Si et sont deux ensembles finis tels que , alors il n'existe pas d'application injective de dans . La première version du principe fut énoncée par Dirichlet en 1834 sous le nom de Schubfachprinzip (« principe du tiroir ») ; sa première utilisation lui est cependant antérieure d'au moins deux siècles.
Bernhard RiemannGeorg Friedrich Bernhard Riemann, né le à Breselenz, royaume de Hanovre, mort le à Selasca, hameau de la commune de Verbania, royaume d'Italie, est un mathématicien allemand. Influent sur le plan théorique, il a apporté de nombreuses contributions importantes à la topologie, l'analyse, la géométrie différentielle et au calcul, certaines d'entre elles ayant permis par la suite le développement de la relativité générale. Bernhard Riemann est né à Breselenz, un village du royaume de Hanovre.
Fonction de compte des nombres premiersEn mathématiques, la fonction de compte des nombres premiers est la fonction comptant le nombre de nombres premiers inférieurs ou égaux à un nombre réel x. Elle est notée π(x) (à ne pas confondre avec la constante π). L’image ci-contre illustre la fonction π(n) pour les valeurs entières de la variable. Elle met en évidence les augmentations de 1 que la fonction subit à chaque fois que x est égal à un nombre premier. Soit l'ensemble des nombres premiers et un nombre réel.
Prolongement analytiqueEn analyse complexe, la théorie du prolongement analytique détaille l'ensemble des propriétés et techniques relatives au prolongement des fonctions holomorphes (ou analytiques). Elle considère d'abord la question du prolongement dans le plan complexe. Puis elle aborde des formes plus générales d'extension qui permettent de prendre en compte les singularités et les complications topologiques qui les accompagnent. La théorie fait alors intervenir soit le concept assez ancien et peu opérant de fonction multiforme, soit le concept plus puissant de surface de Riemann.
Logarithme intégralEn mathématiques, le logarithme intégral li est une fonction spéciale définie en tout nombre réel strictement positif x ≠ 1 par l'intégrale : où ln désigne le logarithme népérien. La fonction n'est pas définie en t = 1, et l'intégrale pour x > 1 doit être interprétée comme la valeur principale de Cauchy : Quand x tend vers +∞, on a l'équivalence c'est-à-dire que D'après le théorème des nombres premiers, la fonction de compte des nombres premiers π(x) est équivalente à x/ln(x), donc à li(x), qui en fournit par ailleurs une meilleure approximation.
Théorème de Faltingsvignette|Gerd Faltings. En théorie des nombres, le théorème de Faltings, précédemment connu sous le nom de conjecture de Mordell donne des résultats sur le nombre de solutions d'une équation diophantienne. Il a été conjecturé par le mathématicien anglais Louis Mordell en 1922 et démontré par Gerd Faltings en 1983, soit environ soixante ans après que la conjecture fut posée. Soit l'équation définie de la manière suivante : avec P un polynôme à coefficients rationnels.
Fonction de MöbiusEn mathématiques, la fonction de Möbius désigne généralement une fonction multiplicative particulière, définie sur les entiers strictement positifs et à valeurs dans l'ensemble {–1, 0, 1}. Elle intervient dans la formule d'inversion de Möbius. Elle est utilisée dans des branches différentes des mathématiques. Vue sous un angle élémentaire, la fonction de Möbius permet certains calculs de dénombrement, en particulier pour l'étude des p-groupes ou en théorie des graphes.