Loi d'extremum généraliséeEn probabilité et statistique, la loi d'extrémum généralisée est une famille de lois de probabilité continues qui servent à représenter des phénomènes de valeurs extrêmes (minimum ou maximum). Elle comprend la loi de Gumbel, la loi de Fréchet et la loi de Weibull, respectivement lois d'extrémum de type I, II et III. Le théorème de Fisher-Tippett-Gnedenko établit que la loi d'extremum généralisée est la distribution limite du maximum (adéquatement normalisé) d'une série de variables aléatoires indépendantes de même distribution (iid).
Cumulative frequency analysisCumulative frequency analysis is the analysis of the frequency of occurrence of values of a phenomenon less than a reference value. The phenomenon may be time- or space-dependent. Cumulative frequency is also called frequency of non-exceedance. Cumulative frequency analysis is performed to obtain insight into how often a certain phenomenon (feature) is below a certain value. This may help in describing or explaining a situation in which the phenomenon is involved, or in planning interventions, for example in flood protection.
Loi logistiqueEn probabilité et en statistiques, la loi logistique est une loi de probabilité absolument continue à support infini utilisé en régression logistique et pour les réseaux de neurones à propagation avant. Son nom de loi logistique est issu du fait que sa fonction de répartition est une fonction logistique. La loi logistique a deux paramètres μ et s > 0 et sa densité est Sa fonction de répartition est Son espérance et sa variance sont données par les formules suivantes : La loi logistique standard est la loi logistique de paramètres 0 et 1.
Loi de Laplace (probabilités)En théorie des probabilités et en statistiques, la loi (distribution) de Laplace est une densité de probabilité continue, portant le nom de Pierre-Simon de Laplace. On la connaît aussi sous le nom de loi double exponentielle, car sa densité peut être vue comme l'association des densités de deux lois exponentielles, accolées dos à dos. La loi de Laplace s'obtient aussi comme résultat de la différence de deux variables exponentielles indépendantes.
Ajustement de loi de probabilitéLajustement de la loi de probabilité ou simplement lajustement de la loi est l'ajustement d'une loi de probabilité à une série de données concernant la mesure répétée d'un phénomène aléatoire. L'ajustement de la loi a pour but de prédire la probabilité ou de prévoir la fréquence d'occurrence de l'ampleur du phénomène dans un certain intervalle. Il existe de nombreuses lois de probabilité, dont certaines peuvent être ajustées plus étroitement à la fréquence observée des données que d'autres, selon les caractéristiques du phénomène et de la loi.
Loi de WeibullEn théorie des probabilités, la loi de Weibull, nommée d'après Waloddi Weibull en 1951, est une loi de probabilité continue. La loi de Weibull est un cas spécial de loi d'extremum généralisée au même titre que la loi de Gumbel ou la loi de Fréchet. Avec deux paramètres (pour x > 0), la densité de probabilité est : où k > 0 est le paramètre de forme et λ > 0 le paramètre d'échelle de la distribution.
Statistique d'ordreEn statistiques, la statistique d'ordre de rang k d'un échantillon statistique est égal à la k-ième plus petite valeur. Associée aux statistiques de rang, la statistique d'ordre fait partie des outils fondamentaux de la statistique non paramétrique et de l'inférence statistique. Deux cas importants de la statistique d'ordre sont les statistiques du minimum et du maximum, et dans une moindre mesure la médiane de l'échantillon ainsi que les différents quantiles.
Loi exponentielleUne loi exponentielle modélise la durée de vie d'un phénomène sans mémoire, ou sans vieillissement, ou sans usure : la probabilité que le phénomène dure au moins s + t heures (ou n'importe quelle autre unité de temps) sachant qu'il a déjà duré t heures sera la même que la probabilité de durer s heures à partir de sa mise en fonction initiale. En d'autres termes, le fait que le phénomène ait duré pendant t heures ne change rien à son espérance de vie à partir du temps t.