Se concentre sur la modélisation numérique des processus atmosphériques pour prédire les phénomènes météorologiques et climatiques, couvrant les concepts et les méthodes clés.
Explore les techniques avancées de discrétisation de l'espace dans l'analyse numérique pour résoudre les systèmes différentiels de manière efficace et précise.
Explore l'estimation des erreurs dans les méthodes numériques pour résoudre les équations différentielles ordinaires, en mettant l'accent sur l'impact des erreurs sur la précision et la stabilité de la solution.
Explore explicitement les méthodes de Runge-Kutta stabilisées et leur application aux problèmes inverses bayésiens, couvrant l'optimisation, l'échantillonnage et les expériences numériques.
Explore l'estimation des erreurs dans les méthodes numériques pour résoudre les équations différentielles, en se concentrant sur l'erreur de troncature locale, la stabilité et la continuité de Lipschitz.
Explore la stabilité transitoire dans la dynamique des systèmes de puissance, couvrant les équations algébriques, les modèles de générateurs et les techniques d'intégration numérique.
Explore les méthodes numériques en biomécanique pour les implants de hanche et met l'accent sur les conditions de compréhension pour améliorer les conceptions et les résultats des patients.