Concepts associés (51)
Variété (algèbre)
En algèbre universelle, une variété est une classe équationnelle, c'est-à-dire une classe K non vide de structures algébriques de même signature qui satisfont un ensemble d'identités (appelé axiomatisation équationnelle de la classe). Un monoïde est un ensemble E muni d'une loi interne * associative et d'un élément neutre. Ainsi, pour tous éléments x, y, z d'un monoïde, les équations suivantes sont vérifiées : (x * y) * z = x * (y * z) x * e = x e * x = x De plus, ces trois équations caractérisent la notion de monoïde.
Table de Cayley
Une table de Cayley est un tableau à double entrée. Lorsqu'un ensemble fini E est muni d'une loi de composition interne •, il est possible de créer un tableau qui présente, pour tous les éléments a et b de E, les résultats obtenus par cette loi • : à l'intersection de la ligne représentant a et de la colonne b se trouve a•b. Le tableau ainsi constitué est appelé table de Cayley du magma (E,•). Cette présentation est semblable à la table de multiplication et à la table d'addition des écoliers.
Demi-groupe de transformations
En algèbre, un demi-groupe de transformations est un ensemble de fonctions d'un ensemble X dans lui-même qui est fermé pour l'opération de composition. S'il contient l'application identité, c'est un monoïde de transformations. C'est l'analogue, pour les demi-groupes, d'un groupe de permutations. Un analogue du théorème de Cayley vaut pour les demi-groupes : tout demi-groupe est isomorphe à un demi-groupe de transformations sur un ensemble. Un demi-groupe de transformations est un couple , où est un ensemble, et est un demi-groupe de transformations sur .
Band (algebra)
In mathematics, a band (also called idempotent semigroup) is a semigroup in which every element is idempotent (in other words equal to its own square). Bands were first studied and named by . The lattice of varieties of bands was described independently in the early 1970s by Biryukov, Fennemore and Gerhard. Semilattices, left-zero bands, right-zero bands, rectangular bands, normal bands, left-regular bands, right-regular bands and regular bands are specific subclasses of bands that lie near the bottom of this lattice and which are of particular interest; they are briefly described below.
Relations de Green
En mathématiques, les relations de Green sont cinq relations d'équivalence qui décrivent les éléments d'un demi-groupe par les idéaux principaux qu’ils engendrent. Les relations sont nommées d'après James Alexander Green, qui les a introduites dans un article paru en 1951. Les relations sont fondamentales pour comprendre la structure d'un demi-groupe : ainsi, pour John M. Howie, un théoricien bien connu des demi-groupes, ces relations sont .
Demi-groupe bicyclique
En mathématiques, et en informatique théorique, le demi-groupe bicyclique est un demi-groupe particulier. Cet objet est important dans la théorie structurelle des demi-groupes et un important exemple de monoïde syntaxique. Même s'il est appelé demi-groupe bicyclique, c'est en fait un monoïde. La première description dans la littérature en a été donnée par Evgenii Sergeevich Lyapin en 1953. Alfred H. Clifford et Gordon Preston, dans leur livre, disent que l'un d'entre eux avait découvert ce monoïde avant 1943, en collaboration avec David Rees, mais n'avait pas publié le résultat.
Symétrisation
En mathématiques, la symétrisation d'un monoïde est une opération de construction d'un groupe dans lequel se projette le monoïde initial, de manière naturelle. On parle parfois de groupe de Grothendieck du monoïde considéré. Ce procédé est notamment appliqué pour construire l'ensemble des entiers relatifs à partir de celui des entiers naturels. Si le monoïde de départ est muni d'une seconde loi de composition qui en fait un semi-anneau commutatif, son symétrisé est un anneau commutatif.
Null semigroup
In mathematics, a null semigroup (also called a zero semigroup) is a semigroup with an absorbing element, called zero, in which the product of any two elements is zero. If every element of a semigroup is a left zero then the semigroup is called a left zero semigroup; a right zero semigroup is defined analogously. According to Clifford and Preston, "In spite of their triviality, these semigroups arise naturally in a number of investigations." Let S be a semigroup with zero element 0.
Semigroup with involution
In mathematics, particularly in abstract algebra, a semigroup with involution or a *-semigroup is a semigroup equipped with an involutive anti-automorphism, which—roughly speaking—brings it closer to a group because this involution, considered as unary operator, exhibits certain fundamental properties of the operation of taking the inverse in a group: uniqueness, double application "cancelling itself out", and the same interaction law with the binary operation as in the case of the group inverse.
Monoïde syntaxique
En informatique théorique, et en particulier dans la théorie des automates finis, le monoïde syntaxique d'un langage formel est un monoïde naturellement attaché au langage. L'étude de ce monoïde permet de refléter certaines propriétés combinatoires du langage par des caractéristiques algébriques du monoïde. L'exemple le plus célèbre de cette relation est la caractérisation, due à Marcel-Paul Schützenberger, des langages rationnels sans étoile (que l'on peut décrire par des expressions rationnelles avec complément mais sans l'étoile de Kleene) : ce sont les langages dont le monoïde syntaxique est fini et apériodique, c'est-à-dire ne contient pas de sous-groupe non trivial.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.