Plan en blocsEn mathématiques combinatoires, un plan en blocs est un ensemble, muni d'une famille de sous-ensembles (avec des répétitions possibles) dont les membres satisfont un ensemble de propriétés considérées dans une application particulière. Les applications proviennent de nombreux domaines, notamment les plans d'expériences, la géométrie finie, la chimie physique, les tests de logiciels, la cryptographie et la géométrie algébrique.
Réseau de LeechLe réseau de Leech est un réseau remarquable dans l'espace euclidien de dimension 24. Il est relié au code de Golay. Ernst Witt le découvre en 1940 mais ne publie pas cette découverte qui sera finalement attribuée à John Leech en 1965. Le réseau de Leech est caractérisé comme étant le seul pair en dimension 24 qui ne contient pas de racines, c'est-à-dire de vecteur v tel que (v,v)=2. Il a été construit par John Leech. Le groupe des automorphismes du réseau de Leech est le groupe de Conway Co0. Il y a exactement 24 .
Plan de Fanothumb|Une représentation du plan de Fano (les six segments et le cercle représentent les 7 droites). En géométrie projective finie, le plan de Fano, portant le nom du mathématicien Gino Fano, est le plus petit plan projectif fini, c'est-à-dire celui comportant le plus petit nombre de points et de droites, à savoir 7 de chaque. C'est le seul plan projectif (au sens des axiomes d'incidence) de 7 points, et c'est le plan projectif sur le corps fini à deux éléments.
Incidence geometryIn mathematics, incidence geometry is the study of incidence structures. A geometric structure such as the Euclidean plane is a complicated object that involves concepts such as length, angles, continuity, betweenness, and incidence. An incidence structure is what is obtained when all other concepts are removed and all that remains is the data about which points lie on which lines. Even with this severe limitation, theorems can be proved and interesting facts emerge concerning this structure.
Automorphisms of the symmetric and alternating groupsIn group theory, a branch of mathematics, the automorphisms and outer automorphisms of the symmetric groups and alternating groups are both standard examples of these automorphisms, and objects of study in their own right, particularly the exceptional outer automorphism of S6, the symmetric group on 6 elements. , and thus . Formally, is complete and the natural map is an isomorphism. , and the outer automorphism is conjugation by an odd permutation. Indeed, the natural maps are isomorphisms.
Code de GolayEn théorie des codes, un code de Golay est un code correcteur d'erreurs pouvant être binaire ou tertiaire, nommé en l'honneur de son inventeur, Marcel Golay. Il y a deux types de codes de Golay binaire. Le code binaire étendu de Golay encode 12 bits de données dans un mot de code de 24 bits de long de telle manière que n'importe quelle erreur sur trois bits puisse être corrigée et n'importe quelle erreur sur quatre bits puisse être détectée.
Projective linear groupIn mathematics, especially in the group theoretic area of algebra, the projective linear group (also known as the projective general linear group or PGL) is the induced action of the general linear group of a vector space V on the associated projective space P(V). Explicitly, the projective linear group is the quotient group PGL(V) = GL(V)/Z(V) where GL(V) is the general linear group of V and Z(V) is the subgroup of all nonzero scalar transformations of V; these are quotiented out because they act trivially on the projective space and they form the kernel of the action, and the notation "Z" reflects that the scalar transformations form the center of the general linear group.
Plan affine (structure d'incidence)Dans une approche axiomatique de la géométrie, il est possible de définir le plan comme une structure d'incidence, c'est-à-dire la donnée d'objets primitifs, les points et les droites (qui sont certains ensembles de ces points) et d'une relation, dite d'incidence, entre point et droite (qui est la relation d'appartenance du point à la droite).
Design combinatoireLa théorie du design combinatoire est une partie des mathématiques combinatoires ; elle traite de l'existence, de la construction et des propriétés de systèmes d'ensembles finis dont les arrangements satisfont certains concepts d'équilibre et/ou de symétrie. Ces concepts sont assez imprécis pour qu'une large gamme d'objets puisse être considérée comme relevant de ces notions. Parfois, cela peut concerner la taille des intersections comme dans les plans en blocs, d'autres fois on est intéressé par la disposition des entrées dans un tableau comme dans les grilles de sudoku.
Plan projectifEn mathématiques, la notion de plan projectif a deux sens distincts, suivant que l'approche est algébrique ou par les axiomes d'incidence entre pointe et droites, l'approche axiomatique donnant une notion qui s'avère un peu plus générale que l'approche algébrique. Un plan projectif en géométrie algébrique est une variété particulière : l'espace projectif de dimension 2. On peut associer un plan projectif à tout corps commutatif (corps des réels, corps des complexes, corps finis) ou non commutatif (quaternions.