Système d'équations algébriquesEn mathématiques, un système d'équations algébriques est un ensemble d'équations polynomiales f1 = 0..., fh = 0 où les fi sont des polynômes de plusieurs variables (ou indéterminées), x1..., xn, à coefficients pris dans un corps ou un anneau k. Une « solution » est un ensemble de valeurs à substituer aux indéterminées annulant toutes les équations du système. Généralement les solutions peuvent être cherchées dans une extension du corps k comme la clôture algébrique de ce corps (ou la clôture algébrique du corps des fractions de k celui-ci est un anneau).
Tour de corpsEn mathématiques, une tour de corps est une suite d'extensions de corps Le nom de tour vient du fait qu'une telle suite est souvent écrite sous la forme Une tour de corps peut aussi bien être finie qu'infinie. est une tour de corps finie composée des corps de nombres rationnels, réels puis complexes. Soit la suite définie par F0 = le corps Q des rationnels et (i.e. Fn+1 est obtenu à partir de Fn en ajoutant la racine 2n-ième de 2). Cette tour de corps est infinie.
Transcendental extensionIn mathematics, a transcendental extension is a field extension such that there exists an element in the field that is transcendental over the field ; that is, an element that is not a root of any univariate polynomial with coefficients in . In other words, a transcendental extension is a field extension that is not algebraic. For example, are both transcendental extensions of A transcendence basis of a field extension (or a transcendence basis of over ) is a maximal algebraically independent subset of over Transcendence bases share many properties with bases of vector spaces.
Corps globalEn mathématiques, un corps global est un corps d'un des types suivants : un corps de nombres, c'est-à-dire une extension finie de Q un corps de fonctions d'une courbe algébrique sur un corps fini, c'est-à-dire une extension finie du corps k(t) des fractions rationnelles à une variable à coefficients dans un corps fini k (de façon équivalente, c'est un corps de type fini et de degré de transcendance 1 sur un corps fini). Emil Artin et George Whaples ont donné une caractérisation axiomatique de ces corps via la théorie des valuations.
Analyse p-adiqueL’analyse p-adique est une branche des mathématiques qui traite des fonctions de nombres p-adiques. Ses principales applications concernent la théorie des nombres : elle est utilisée dans l'étude des équations diophantiennes (c'était la motivation de Hensel pour définir les nombres p-adiques) ; l'étude des fonctions spéciales p-adiques (fonctions exponentielle et logarithme, fonctions zêta, gamma) permet de mieux comprendre l'arithmétique cachée dans les valeurs spéciales des fonctions réelles ; l'analyse fonctionnelle p-adique joue un rôle important dans l'étude des représentations de certains .
Groupe de Galois absoluEn mathématiques, le groupe de Galois absolu d'un corps commutatif K est le groupe de Galois d'une clôture séparable (extension algébrique séparable maximale, nécessairement normale donc galoisienne) Ksep du corps K. Dans le cas d'un corps parfait (et donc en particulier en caractéristique nulle), une clôture séparable coïncide avec une clôture algébrique. La compréhension du groupe de Galois absolu du corps des nombres rationnels est un problème important en théorie algébrique des nombres.
Corps de classes de HilbertEn théorie algébrique des nombres, le corps de Hilbert H(K) d'un corps de nombres algébriques K est l'extension abélienne non ramifiée maximale de ce corps de nombres. Cet objet doit son nom au mathématicien allemand David Hilbert. Son étude est à la fois une étape importante, et un archétype, pour la théorie des corps de classes : via l'isomorphisme de réciprocité (symbole d'Artin) de la correspondance du corps de classes, le groupe de Galois Gal(H(K)/K) est isomorphe au groupe des classes du corps K.
Formule du nombre de classesEn théorie des nombres, la formule du nombre de classes relie de nombreux invariants importants d'un corps de nombres à une valeur spécifique de sa fonction zêta de Dedekind. Nous partons des données suivantes : K est un corps de nombres. où est le nombre de plongements réels de K, et plongements complexes K. la fonction zêta de Dedekind de K. le nombre de classes, le cardinal du groupe des classes d'idéaux de K. le régulateur de K. le nombre de racines de l'unité dans K. est le discriminant de l'extension .
Discriminant d'un corps de nombresdroite|vignette|upright=1.6|Un domaine fondamental de l'anneau des entiers du corps K obtenu à partir de en adjoignant une racine de . Ce domaine fondamental se trouve à l'intérieur de . Le discriminant de K est 49 = 7. En conséquence, le volume du domaine fondamental est 7 et K n'est ramifié qu'en 7. En mathématiques, le discriminant d'un corps de nombres est un invariant numérique qui, moralement, mesure la taille de l'anneau des entiers de ce corps de nombres.
Extension cyclotomiqueEn théorie algébrique des nombres, on appelle extension cyclotomique du corps Q des nombres rationnels tout corps de rupture d'un polynôme cyclotomique, c'est-à-dire tout corps de la forme Q(ζ) où ζ est une racine de l'unité. Ces corps jouent un rôle crucial, d'une part dans la compréhension de certaines équations diophantiennes : par exemple, l'arithmétique (groupe des classes, notamment) de leur anneau des entiers permet de montrer le dernier théorème de Fermat dans de nombreux cas (voir nombre premier régulier) ; mais aussi, dans la compréhension des extensions algébriques de Q, ce qui peut être considéré comme une version abstraite du problème précédent : le théorème de Kronecker-Weber, par exemple, assure que toute extension abélienne est contenue dans une extension cyclotomique.