Triaki-icosaèdreUn triaki-icosaèdre est un polyèdre dual d'un solide d'Archimède, ou un solide de Catalan. Son dual est le dodécaèdre tronqué. Selon la notation de Conway des polyèdres, le préfixe triaki indique que le polyèdre peut être vu comme un icosaèdre auquel une pyramide à base triangulaire a été posée sur chacune de ses faces .
PentakidodécaèdreUn pentakidodécaèdre est un polyèdre dual d'un solide d'Archimède, ou un solide de Catalan. Son dual est l'icosaèdre tronqué. Il peut être vu comme un dodécaèdre avec une pyramide pentagonale couvrant chaque face. Cette interprétation est exprimée dans le nom. 200pxLe pentakidodécaèdre dans un modèle de fullerène : chaque segment de surface représente un atome de carbone. Le Spaceship Earth à l'Epcot de Walt Disney World Resort est basé sur cette forme.
Regular icosahedronIn geometry, a regular icosahedron (ˌaɪkɒsəˈhiːdrən,-kə-,-koʊ- or aɪˌkɒsəˈhiːdrən) is a convex polyhedron with 20 faces, 30 edges and 12 vertices. It is one of the five Platonic solids, and the one with the most faces. It has five equilateral triangular faces meeting at each vertex. It is represented by its Schläfli symbol {3,5}, or sometimes by its vertex figure as 3.3.3.3.3 or 35. It is the dual of the regular dodecahedron, which is represented by {5,3}, having three pentagonal faces around each vertex.
Polyèdre sphériquevignette| Icosaèdre tronqué et ballon de football. Un polyèdre sphérique est constitué par un certain nombre d'arcs de grand cercle d'une même sphère (les arêtes) dont les extrémités (les sommets) sont communes à plusieurs arêtes ; les portions de sphère délimitées par les arêtes sont les faces. Autrement dit, un polyèdre sphérique est un pavage de la sphère par des polygones sphériques. Par abus de langage on appelle aussi polyèdre sphérique un polyèdre réalisant une approximation de la sphère, comme le dodécaèdre régulier, l'icosaèdre régulier ou l'icosaèdre tronqué.
Diagramme de Coxeter-DynkinEn géométrie, un diagramme de Coxeter-Dynkin est un graphe représentant un ensemble relationnel de miroirs (ou d'hyperplans de réflexion) dans l'espace pour une construction kaléidoscopique. En tant que graphe lui-même, le diagramme représente les groupes de Coxeter, chaque nœud du graphe représente un miroir (facette du domaine) et chaque branche du graphe représente l'ordre de l'angle diédral entre deux miroirs (sur une arête du domaine). En plus, les graphes ont des anneaux (cercles) autour des nœuds pour les miroirs actifs représentant un polytope précis.
Groupe modulaireEn mathématiques, on appelle groupe modulaire le groupe PSL(2, Z), quotient du groupe spécial linéaire SL(2, Z) par son centre { Id, –Id }. Il s'identifie à l'image de SL(2, Z) dans le groupe de Lie On le note souvent Γ(1) ou simplement Γ. Ce nom provient de l'action à gauche et fidèle de Γ(1) par homographies sur le demi-plan de Poincaré H des nombres complexes de partie imaginaire strictement positive. Cette action n'est que la restriction de l'action de PGL(2, C) sur la droite projective complexe P(C) = C ∪ {∞} : la matrice agit sur P(C) par la transformation de Möbius qui en envoie z sur .
Petit rhombicosidodécaèdrevignette|Patron. Le petit rhombicosidodécaèdre est un solide d'Archimède. Il possède 20 faces triangulaires régulières, 30 faces carrées régulières, 12 faces pentagonales régulières, 60 sommets et 120 arêtes. Le nom rhombicosidodécaèdre fait référence au fait que les 30 faces carrées sont placées dans les mêmes plans que les 30 faces du triacontaèdre rhombique qui est le dual de l'icosidodécaèdre. Il peut aussi être appelé un dodécaèdre étendu ou un icosaèdre étendu à partir des opérations de troncature du solide uniforme.
IcosaèdreEn géométrie, un icosaèdre est un solide de dimension 3, de la famille des polyèdres, contenant exactement vingt faces. Le préfixe icosa-, d'origine grecque, signifie « vingt ». Il existe de nombreux polyèdres à vingt faces tels l'icosaèdre régulier convexe (appelé plus simplement icosaèdre si le contexte fait référence aux solides de Platon), l'icosaèdre rhombique, le pseudo-icosaèdre, le grand icosaèdre ou plusieurs solides de Johnson.
IcosidodécaèdreLe solide d'Archimède de vingt faces triangulaires et douze faces pentagonales s’appelle un icosidodécaèdre. Le mot “icosidodécaèdre” commence par “icos”, qui signifie “vingt”, soit le nombre de faces du solide de Platon de douze sommets, qui est le dual du “dodécaèdre” de Platon, dont les douze faces sont pentagonales. Cette image‐ci montre l’icosidodécaèdre de face et de dessus, avec deux faces triangulaires horizontales. De dessus le contour est un dodécagone, qui entoure dix triangles et six pentagones.
Réflexion (mathématiques)En mathématiques, une réflexion ou symétrie axiale du plan euclidien est une symétrie orthogonale par rapport à une droite (droite vectorielle s'il s'agit d'un plan vectoriel euclidien). Elle constitue alors une symétrie axiale orthogonale. Plus généralement, dans un espace euclidien quelconque, une réflexion est une symétrie orthogonale par rapport à un hyperplan, c'est-à-dire à un sous-espace de codimension 1. En dimension 3, il s'agit donc d'une symétrie orthogonale par rapport à un plan.