Concept

Théorème d'uniformisation de Riemann

Concepts associés (16)
Variété (géométrie)
En mathématiques, et plus particulièrement en géométrie, la notion de variété peut être appréhendée intuitivement comme la généralisation de la classification qui établit qu'une courbe est une variété de dimension 1 et une surface est une variété de dimension 2. Une variété de dimension n, où n désigne un entier naturel, est un espace topologique localement euclidien, c'est-à-dire dans lequel tout point appartient à une région qui s'apparente à un tel espace.
Théorème de l'application conforme
En mathématiques, et plus précisément en analyse complexe, le théorème de l'application conforme, dû à Bernhard Riemann, assure que toutes les parties ouvertes simplement connexes du plan complexe qui ne sont ni vides ni égales au plan tout entier sont conformes entre elles. Le théorème fut énoncé (sous l'hypothèse plus forte d'une frontière formés d'arcs différentiables) par Bernhard Riemann dans sa thèse, en 1851.
Surface de Riemann
En géométrie différentielle et géométrie analytique complexe, une surface de Riemann est une variété complexe de dimension 1. Cette notion a été introduite par Bernhard Riemann pour prendre en compte les singularités et les complications topologiques qui accompagnent certains prolongements analytiques de fonctions holomorphes. Par oubli de structure, une surface de Riemann se présente comme une variété différentielle réelle de dimension 2, d'où le nom surface. Elles ont été nommées en hommage au mathématicien allemand Bernhard Riemann.
Sphère de Riemann
En mathématiques, la sphère de Riemann est une manière de prolonger le plan des nombres complexes avec un point additionnel à l'infini, de manière que certaines expressions mathématiques deviennent convergentes et élégantes, du moins dans certains contextes. Déjà envisagée par le mathématicien Carl Friedrich Gauss, elle est baptisée du nom de son élève Bernhard Riemann. Ce plan s'appelle également la droite projective complexe, dénoté .
Bernhard Riemann
Georg Friedrich Bernhard Riemann, né le à Breselenz, royaume de Hanovre, mort le à Selasca, hameau de la commune de Verbania, royaume d'Italie, est un mathématicien allemand. Influent sur le plan théorique, il a apporté de nombreuses contributions importantes à la topologie, l'analyse, la géométrie différentielle et au calcul, certaines d'entre elles ayant permis par la suite le développement de la relativité générale. Bernhard Riemann est né à Breselenz, un village du royaume de Hanovre.
Hyperbolic space
In mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to -1. It is homogeneous, and satisfies the stronger property of being a symmetric space. There are many ways to construct it as an open subset of with an explicitly written Riemannian metric; such constructions are referred to as models. Hyperbolic 2-space, H2, which was the first instance studied, is also called the hyperbolic plane.
Variété projective
En géométrie algébrique, les variétés projectives forment une classe importante de variétés. Elles vérifient des propriétés de compacité et des propriétés de finitude. C'est l'objet central de la géométrie algébrique globale. Sur un corps algébriquement clos, les points d'une variété projective sont les points d'un ensemble algébrique projectif. On fixe un corps (commutatif) k. Algèbre homogène. Soit B le quotient de par un idéal homogène ( idéal engendré par des polynômes homogènes).
Upper half-plane
In mathematics, the upper half-plane, is the set of points in the Cartesian plane with The lower half-plane is defined similarly, by requiring that be negative instead. Each is an example of two-dimensional half-space. The affine transformations of the upper half-plane include shifts , , and dilations , . Proposition: Let and be semicircles in the upper half-plane with centers on the boundary. Then there is an affine mapping that takes to . Proof: First shift the center of to . Then take and dilate.
Connexité simple
En topologie générale et en topologie algébrique, la notion de simple connexité raffine celle de connexe par arcs. Dans un espace connexe par arcs, deux points quelconques peuvent toujours être reliés par un chemin. Dans un espace simplement connexe, cela est toujours possible d'une et une seule façon, l'unicité étant à comprendre au sens de « à déformation (isotopie) près ». Intuitivement, là où un espace connexe est simplement « d'un seul tenant », un espace simplement connexe est de plus sans « trou » ni « poignée ».
Espace de Teichmüller
En mathématiques, l'espace de Teichmüller d'une surface (réelle) topologique (ou différentielle) , est un espace qui paramétrise des structures complexes sur à l'action des homéomorphismes isotopes à l'identité près. Les espaces Teichmüller portent le nom d'Oswald Teichmüller. Chaque point d'un espace de Teichmüller peut être considérée comme une classe d'isomorphismes de surfaces de Riemann "marquées", où un "marquage" est une classe d'isotopie d'homéomorphismes de sur lui-même.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.