Explore l'estimation non paramétrique à l'aide d'estimateurs de densité du noyau pour estimer les fonctions et les paramètres de distribution, en mettant l'accent sur la sélection de la bande passante pour une précision optimale.
Explore les modèles thématiques, les modèles de mélange gaussien, la répartition des dirichlets latents et l'inférence variationnelle dans la compréhension des structures latentes à l'intérieur des données.
Explore l'estimation des paramètres des EPS à l'aide de la théorie de la réponse linéaire et couvre les défis, les exemples, les algorithmes et la convergence.
Couvre la minimisation empirique des risques, l'apprentissage statistique et des exemples de prédiction du cancer, de prix des maisons et de génération d'images.
Couvre les principes de régression de mélange gaussien, la modélisation des densités articulaires et conditionnelles pour les ensembles de données multimodaux.
Couvre la régression non paramétrique à l'aide de techniques d'estimation basées sur le noyau pour modéliser des relations complexes entre les variables.
Explore l'apprentissage des modèles graphiques avec les estimateurs M, la régression des processus Gaussiens, la modélisation Google PageRank, l'estimation de la densité et les modèles linéaires généralisés.
Explore les modèles de signaux paramétriques, y compris les processus AR et les chaînes de Markov, couvrant la synthèse, l'analyse et les structures de corrélation.
Couvre l'architecture des transformateurs et les mécanismes d'attention subquadratiques, en se concentrant sur les approximations efficaces et leurs applications dans l'apprentissage automatique.